[Feature] Add support for Groq LLMs (#1284)

This commit is contained in:
Deshraj Yadav
2024-02-25 11:58:03 -08:00
committed by GitHub
parent b4bb4cf053
commit 92dd7edb57
6 changed files with 105 additions and 3 deletions

View File

@@ -22,6 +22,7 @@ Embedchain comes with built-in support for various popular large language models
<Card title="Vertex AI" href="#vertex-ai"></Card>
<Card title="Mistral AI" href="#mistral-ai"></Card>
<Card title="AWS Bedrock" href="#aws-bedrock"></Card>
<Card title="Groq" href="#groq"></Card>
</CardGroup>
## OpenAI
@@ -654,4 +655,60 @@ llm:
</Note>
<br/ >
## Groq
[Groq](https://groq.com/) is the creator of the world's first Language Processing Unit (LPU), providing exceptional speed performance for AI workloads running on their LPU Inference Engine.
### Usage
In order to use LLMs from Groq, go to their [platform](https://console.groq.com/keys) and get the API key.
Set the API key as `GROQ_API_KEY` environment variable or pass in your app configuration to use the model as given below in the example.
<CodeGroup>
```python main.py
import os
from embedchain import App
# Set your API key here or pass as the environment variable
groq_api_key = "gsk_xxxx"
config = {
"llm": {
"provider": "groq",
"config": {
"model": "mixtral-8x7b-32768",
"api_key": groq_api_key,
"stream": True
}
}
}
app = App.from_config(config=config)
# Add your data source here
app.add("https://docs.embedchain.ai/sitemap.xml", data_type="sitemap")
app.query("Write a poem about Embedchain")
# In the realm of data, vast and wide,
# Embedchain stands with knowledge as its guide.
# A platform open, for all to try,
# Building bots that can truly fly.
# With REST API, data in reach,
# Deployment a breeze, as easy as a speech.
# Updating data sources, anytime, anyday,
# Embedchain's power, never sway.
# A knowledge base, an assistant so grand,
# Connecting to platforms, near and far.
# Discord, WhatsApp, Slack, and more,
# Embedchain's potential, never a bore.
```
</CodeGroup>
<br/ >
<Snippet file="missing-llm-tip.mdx" />

View File

@@ -23,6 +23,7 @@ class LlmFactory:
"google": "embedchain.llm.google.GoogleLlm",
"aws_bedrock": "embedchain.llm.aws_bedrock.AWSBedrockLlm",
"mistralai": "embedchain.llm.mistralai.MistralAILlm",
"groq": "embedchain.llm.groq.GroqLlm",
}
provider_to_config_class = {
"embedchain": "embedchain.config.llm.base.BaseLlmConfig",

43
embedchain/llm/groq.py Normal file
View File

@@ -0,0 +1,43 @@
import os
from typing import Optional
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.schema import HumanMessage, SystemMessage
try:
from langchain_groq import ChatGroq
except ImportError:
raise ImportError("Groq requires extra dependencies. Install with `pip install langchain-groq`") from None
from embedchain.config import BaseLlmConfig
from embedchain.helpers.json_serializable import register_deserializable
from embedchain.llm.base import BaseLlm
@register_deserializable
class GroqLlm(BaseLlm):
def __init__(self, config: Optional[BaseLlmConfig] = None):
super().__init__(config=config)
def get_llm_model_answer(self, prompt) -> str:
response = self._get_answer(prompt, self.config)
return response
def _get_answer(self, prompt: str, config: BaseLlmConfig) -> str:
messages = []
if config.system_prompt:
messages.append(SystemMessage(content=config.system_prompt))
messages.append(HumanMessage(content=prompt))
api_key = config.api_key or os.environ["GROQ_API_KEY"]
kwargs = {
"model_name": config.model or "mixtral-8x7b-32768",
"temperature": config.temperature,
"groq_api_key": api_key,
}
if config.stream:
callbacks = config.callbacks if config.callbacks else [StreamingStdOutCallbackHandler()]
chat = ChatGroq(**kwargs, streaming=config.stream, callbacks=callbacks, api_key=api_key)
else:
chat = ChatGroq(**kwargs)
return chat.invoke(messages).content

View File

@@ -58,8 +58,7 @@ class OpenAILlm(BaseLlm):
messages: list[BaseMessage],
) -> str:
from langchain.output_parsers.openai_tools import JsonOutputToolsParser
from langchain_core.utils.function_calling import \
convert_to_openai_tool
from langchain_core.utils.function_calling import convert_to_openai_tool
openai_tools = [convert_to_openai_tool(tools)]
chat = chat.bind(tools=openai_tools).pipe(JsonOutputToolsParser())

View File

@@ -406,9 +406,11 @@ def validate_config(config_data):
"aws_bedrock",
"mistralai",
"vllm",
"groq",
),
Optional("config"): {
Optional("model"): str,
Optional("model_name"): str,
Optional("number_documents"): int,
Optional("temperature"): float,
Optional("max_tokens"): int,

View File

@@ -1,6 +1,6 @@
[tool.poetry]
name = "embedchain"
version = "0.1.85"
version = "0.1.86"
description = "Simplest open source retrieval(RAG) framework"
authors = [
"Taranjeet Singh <taranjeet@embedchain.ai>",