Support for hybrid search in Azure AI vector store (#2408)
Co-authored-by: Deshraj Yadav <deshrajdry@gmail.com>
This commit is contained in:
@@ -127,19 +127,22 @@ class ChromaDB(VectorStoreBase):
|
||||
logger.info(f"Inserting {len(vectors)} vectors into collection {self.collection_name}")
|
||||
self.collection.add(ids=ids, embeddings=vectors, metadatas=payloads)
|
||||
|
||||
def search(self, query: List[list], limit: int = 5, filters: Optional[Dict] = None) -> List[OutputData]:
|
||||
def search(
|
||||
self, query: str, vectors: List[list], limit: int = 5, filters: Optional[Dict] = None
|
||||
) -> List[OutputData]:
|
||||
"""
|
||||
Search for similar vectors.
|
||||
|
||||
Args:
|
||||
query (List[list]): Query vector.
|
||||
query (str): Query.
|
||||
vectors (List[list]): List of vectors to search.
|
||||
limit (int, optional): Number of results to return. Defaults to 5.
|
||||
filters (Optional[Dict], optional): Filters to apply to the search. Defaults to None.
|
||||
|
||||
Returns:
|
||||
List[OutputData]: Search results.
|
||||
"""
|
||||
results = self.collection.query(query_embeddings=query, where=filters, n_results=limit)
|
||||
results = self.collection.query(query_embeddings=vectors, where=filters, n_results=limit)
|
||||
final_results = self._parse_output(results)
|
||||
return final_results
|
||||
|
||||
|
||||
Reference in New Issue
Block a user