Files
t6_mem0/mem0/vector_stores/chroma.py
2025-03-20 22:57:00 +05:30

224 lines
7.1 KiB
Python

import logging
from typing import Dict, List, Optional
from pydantic import BaseModel
try:
import chromadb
from chromadb.config import Settings
except ImportError:
raise ImportError("The 'chromadb' library is required. Please install it using 'pip install chromadb'.")
from mem0.vector_stores.base import VectorStoreBase
logger = logging.getLogger(__name__)
class OutputData(BaseModel):
id: Optional[str] # memory id
score: Optional[float] # distance
payload: Optional[Dict] # metadata
class ChromaDB(VectorStoreBase):
def __init__(
self,
collection_name: str,
client: Optional[chromadb.Client] = None,
host: Optional[str] = None,
port: Optional[int] = None,
path: Optional[str] = None,
):
"""
Initialize the Chromadb vector store.
Args:
collection_name (str): Name of the collection.
client (chromadb.Client, optional): Existing chromadb client instance. Defaults to None.
host (str, optional): Host address for chromadb server. Defaults to None.
port (int, optional): Port for chromadb server. Defaults to None.
path (str, optional): Path for local chromadb database. Defaults to None.
"""
if client:
self.client = client
else:
self.settings = Settings(anonymized_telemetry=False)
if host and port:
self.settings.chroma_server_host = host
self.settings.chroma_server_http_port = port
self.settings.chroma_api_impl = "chromadb.api.fastapi.FastAPI"
else:
if path is None:
path = "db"
self.settings.persist_directory = path
self.settings.is_persistent = True
self.client = chromadb.Client(self.settings)
self.collection_name = collection_name
self.collection = self.create_col(collection_name)
def _parse_output(self, data: Dict) -> List[OutputData]:
"""
Parse the output data.
Args:
data (Dict): Output data.
Returns:
List[OutputData]: Parsed output data.
"""
keys = ["ids", "distances", "metadatas"]
values = []
for key in keys:
value = data.get(key, [])
if isinstance(value, list) and value and isinstance(value[0], list):
value = value[0]
values.append(value)
ids, distances, metadatas = values
max_length = max(len(v) for v in values if isinstance(v, list) and v is not None)
result = []
for i in range(max_length):
entry = OutputData(
id=ids[i] if isinstance(ids, list) and ids and i < len(ids) else None,
score=(distances[i] if isinstance(distances, list) and distances and i < len(distances) else None),
payload=(metadatas[i] if isinstance(metadatas, list) and metadatas and i < len(metadatas) else None),
)
result.append(entry)
return result
def create_col(self, name: str, embedding_fn: Optional[callable] = None):
"""
Create a new collection.
Args:
name (str): Name of the collection.
embedding_fn (Optional[callable]): Embedding function to use. Defaults to None.
Returns:
chromadb.Collection: The created or retrieved collection.
"""
collection = self.client.get_or_create_collection(
name=name,
embedding_function=embedding_fn,
)
return collection
def insert(
self,
vectors: List[list],
payloads: Optional[List[Dict]] = None,
ids: Optional[List[str]] = None,
):
"""
Insert vectors into a collection.
Args:
vectors (List[list]): List of vectors to insert.
payloads (Optional[List[Dict]], optional): List of payloads corresponding to vectors. Defaults to None.
ids (Optional[List[str]], optional): List of IDs corresponding to vectors. Defaults to None.
"""
logger.info(f"Inserting {len(vectors)} vectors into collection {self.collection_name}")
self.collection.add(ids=ids, embeddings=vectors, metadatas=payloads)
def search(
self, query: str, vectors: List[list], limit: int = 5, filters: Optional[Dict] = None
) -> List[OutputData]:
"""
Search for similar vectors.
Args:
query (str): Query.
vectors (List[list]): List of vectors to search.
limit (int, optional): Number of results to return. Defaults to 5.
filters (Optional[Dict], optional): Filters to apply to the search. Defaults to None.
Returns:
List[OutputData]: Search results.
"""
results = self.collection.query(query_embeddings=vectors, where=filters, n_results=limit)
final_results = self._parse_output(results)
return final_results
def delete(self, vector_id: str):
"""
Delete a vector by ID.
Args:
vector_id (str): ID of the vector to delete.
"""
self.collection.delete(ids=vector_id)
def update(
self,
vector_id: str,
vector: Optional[List[float]] = None,
payload: Optional[Dict] = None,
):
"""
Update a vector and its payload.
Args:
vector_id (str): ID of the vector to update.
vector (Optional[List[float]], optional): Updated vector. Defaults to None.
payload (Optional[Dict], optional): Updated payload. Defaults to None.
"""
self.collection.update(ids=vector_id, embeddings=vector, metadatas=payload)
def get(self, vector_id: str) -> OutputData:
"""
Retrieve a vector by ID.
Args:
vector_id (str): ID of the vector to retrieve.
Returns:
OutputData: Retrieved vector.
"""
result = self.collection.get(ids=[vector_id])
return self._parse_output(result)[0]
def list_cols(self) -> List[chromadb.Collection]:
"""
List all collections.
Returns:
List[chromadb.Collection]: List of collections.
"""
return self.client.list_collections()
def delete_col(self):
"""
Delete a collection.
"""
self.client.delete_collection(name=self.collection_name)
def col_info(self) -> Dict:
"""
Get information about a collection.
Returns:
Dict: Collection information.
"""
return self.client.get_collection(name=self.collection_name)
def list(self, filters: Optional[Dict] = None, limit: int = 100) -> List[OutputData]:
"""
List all vectors in a collection.
Args:
filters (Optional[Dict], optional): Filters to apply to the list. Defaults to None.
limit (int, optional): Number of vectors to return. Defaults to 100.
Returns:
List[OutputData]: List of vectors.
"""
results = self.collection.get(where=filters, limit=limit)
return [self._parse_output(results)]