[bugfix] Fix issue when llm config is not defined (#763)

This commit is contained in:
Deshraj Yadav
2023-10-04 12:08:21 -07:00
committed by GitHub
parent d0af018b8d
commit 87d0b5c76f
15 changed files with 100 additions and 88 deletions

View File

@@ -34,4 +34,4 @@ jobs:
file: coverage.xml
env:
CODECOV_TOKEN: ${{ secrets.CODECOV_TOKEN }}

View File

@@ -9,6 +9,9 @@ PROJECT_NAME := embedchain
install:
poetry install
install_all:
poetry install --all-extras
install_es:
poetry install --extras elasticsearch

View File

@@ -67,7 +67,7 @@ class BaseLlmConfig(BaseConfig):
deployment_name: Optional[str] = None,
system_prompt: Optional[str] = None,
where: Dict[str, Any] = None,
query_type: Optional[str] = None
query_type: Optional[str] = None,
):
"""
Initializes a configuration class instance for the LLM.

View File

@@ -1,8 +1,8 @@
from embedchain.chunkers.base_chunker import BaseChunker
from embedchain.chunkers.docs_site import DocsSiteChunker
from embedchain.chunkers.docx_file import DocxFileChunker
from embedchain.chunkers.mdx import MdxChunker
from embedchain.chunkers.images import ImagesChunker
from embedchain.chunkers.mdx import MdxChunker
from embedchain.chunkers.notion import NotionChunker
from embedchain.chunkers.pdf_file import PdfFileChunker
from embedchain.chunkers.qna_pair import QnaPairChunker

View File

@@ -392,8 +392,13 @@ class EmbedChain(JSONSerializable):
# Count before, to calculate a delta in the end.
chunks_before_addition = self.db.count()
self.db.add(embeddings=embeddings_data.get("embeddings", None), documents=documents, metadatas=metadatas,
ids=ids, skip_embedding = (chunker.data_type == DataType.IMAGES))
self.db.add(
embeddings=embeddings_data.get("embeddings", None),
documents=documents,
metadatas=metadatas,
ids=ids,
skip_embedding=(chunker.data_type == DataType.IMAGES),
)
count_new_chunks = self.db.count() - chunks_before_addition
print((f"Successfully saved {src} ({chunker.data_type}). New chunks count: {count_new_chunks}"))
return list(documents), metadatas, ids, count_new_chunks
@@ -437,17 +442,18 @@ class EmbedChain(JSONSerializable):
# We cannot query the database with the input query in case of an image search. This is because we need
# to bring down both the image and text to the same dimension to be able to compare them.
db_query = input_query
if config.query_type == "Images":
if hasattr(config, "query_type") and config.query_type == "Images":
# We import the clip processor here to make sure the package is not dependent on clip dependency even if the
# image dataset is not being used
from embedchain.models.clip_processor import ClipProcessor
db_query = ClipProcessor.get_text_features(query=input_query)
contents = self.db.query(
input_query=db_query,
n_results=query_config.number_documents,
where=where,
skip_embedding = (config.query_type == "Images")
skip_embedding=(hasattr(config, "query_type") and config.query_type == "Images"),
)
return contents

View File

@@ -22,7 +22,7 @@ class GPT4ALLLlm(BaseLlm):
from gpt4all import GPT4All
except ModuleNotFoundError:
raise ModuleNotFoundError(
"The GPT4All python package is not installed. Please install it with `pip install --upgrade embedchain[opensource]`" # noqa E501
"The GPT4All python package is not installed. Please install it with `pip install --upgrade embedchain[opensource]`" # noqa E501
) from None
return GPT4All(model_name=model)

View File

@@ -1,11 +1,11 @@
import os
import logging
import hashlib
import logging
import os
from embedchain.loaders.base_loader import BaseLoader
class ImagesLoader(BaseLoader):
def load_data(self, image_url):
"""
Loads images from the supplied directory/file and applies CLIP model transformation to represent these images
@@ -15,6 +15,7 @@ class ImagesLoader(BaseLoader):
"""
# load model and image preprocessing
from embedchain.models.clip_processor import ClipProcessor
model, preprocess = ClipProcessor.load_model()
if os.path.isfile(image_url):
data = [ClipProcessor.get_image_features(image_url, model, preprocess)]
@@ -28,8 +29,11 @@ class ImagesLoader(BaseLoader):
# Log the file that was not loaded
logging.exception("Failed to load the file {}. Exception {}".format(filepath, e))
# Get the metadata like Size, Last Modified and Last Created timestamps
image_path_metadata = [str(os.path.getsize(image_url)), str(os.path.getmtime(image_url)),
str(os.path.getctime(image_url))]
image_path_metadata = [
str(os.path.getsize(image_url)),
str(os.path.getmtime(image_url)),
str(os.path.getctime(image_url)),
]
doc_id = hashlib.sha256((" ".join(image_path_metadata) + image_url).encode()).hexdigest()
return {
"doc_id": doc_id,

View File

@@ -1,6 +1,6 @@
try:
import torch
import clip
import torch
from PIL import Image, UnidentifiedImageError
except ImportError:
raise ImportError("Images requires extra dependencies. Install with `pip install embedchain[images]`") from None
@@ -39,14 +39,8 @@ class ClipProcessor:
image_features /= image_features.norm(dim=-1, keepdim=True)
image_features = image_features.cpu().detach().numpy().tolist()[0]
meta_data = {
"url": image_url
}
return {
"content": image_url,
"embedding": image_features,
"meta_data": meta_data
}
meta_data = {"url": image_url}
return {"content": image_url, "embedding": image_features, "meta_data": meta_data}
@staticmethod
def get_text_features(query):

View File

@@ -115,8 +115,14 @@ class ChromaDB(BaseVectorDB):
def get_advanced(self, where):
return self.collection.get(where=where, limit=1)
def add(self, embeddings: List[List[float]], documents: List[str], metadatas: List[object],
ids: List[str], skip_embedding: bool) -> Any:
def add(
self,
embeddings: List[List[float]],
documents: List[str],
metadatas: List[object],
ids: List[str],
skip_embedding: bool,
) -> Any:
"""
Add vectors to chroma database
@@ -184,7 +190,7 @@ class ChromaDB(BaseVectorDB):
except InvalidDimensionException as e:
raise InvalidDimensionException(
e.message()
+ ". This is commonly a side-effect when an embedding function, different from the one used to add the embeddings, is used to retrieve an embedding from the database." # noqa E501
+ ". This is commonly a side-effect when an embedding function, different from the one used to add the embeddings, is used to retrieve an embedding from the database." # noqa E501
) from None
results_formatted = self._format_result(result)
contents = [result[0].page_content for result in results_formatted]

View File

@@ -100,8 +100,14 @@ class ElasticsearchDB(BaseVectorDB):
ids = [doc["_id"] for doc in docs]
return {"ids": set(ids)}
def add(self, embeddings: List[List[float]], documents: List[str], metadatas: List[object],
ids: List[str], skip_embedding: bool) -> Any:
def add(
self,
embeddings: List[List[float]],
documents: List[str],
metadatas: List[object],
ids: List[str],
skip_embedding: bool,
) -> Any:
"""
add data in vector database
:param documents: list of texts to add

View File

@@ -94,7 +94,7 @@ pytube = "^15.0.0"
duckduckgo-search = "^3.8.5"
llama-hub = { version = "^0.0.29", optional = true }
sentence-transformers = { version = "^2.2.2", optional = true }
torch = { version = ">=2.0.0, !=2.0.1", optional = true }
torch = { version = "2.0.0", optional = true }
# Torch 2.0.1 is not compatible with poetry (https://github.com/pytorch/pytorch/issues/100974)
gpt4all = { version = "1.0.8", optional = true }
# 1.0.9 is not working for some users (https://github.com/nomic-ai/gpt4all/issues/1394)
@@ -107,6 +107,8 @@ discord = { version = "^2.3.2", optional = true }
slack-sdk = { version = "3.21.3", optional = true }
docx2txt = "^0.8"
clip = {git = "https://github.com/openai/CLIP.git#a1d0717", optional = true}
pillow = { version = "10.0.1", optional = true }
torchvision = { version = ">=0.15.1, !=0.15.2", optional = true }
ftfy = { version = "6.1.1", optional = true }
regex = { version = "2023.8.8", optional = true }
@@ -131,7 +133,7 @@ poe = ["fastapi-poe"]
discord = ["discord"]
slack = ["slack-sdk", "flask"]
whatsapp = ["twilio", "flask"]
images = ["torch", "ftfy", "regex", "clip"]
images = ["torch", "ftfy", "regex", "clip", "pillow", "torchvision"]
[tool.poetry.group.docs.dependencies]

View File

@@ -19,11 +19,13 @@ class TestImageChunker(unittest.TestCase):
image_path = "./tmp/image.jpeg"
result = chunker.create_chunks(MockLoader(), image_path)
expected_chunks = {'doc_id': '123',
'documents': [image_path],
'embeddings': ['embedding'],
'ids': ['140bedbf9c3f6d56a9846d2ba7088798683f4da0c248231336e6a05679e4fdfe'],
'metadatas': [{'data_type': 'images', 'doc_id': '123', 'url': 'none'}]}
expected_chunks = {
"doc_id": "123",
"documents": [image_path],
"embeddings": ["embedding"],
"ids": ["140bedbf9c3f6d56a9846d2ba7088798683f4da0c248231336e6a05679e4fdfe"],
"metadatas": [{"data_type": "images", "doc_id": "123", "url": "none"}],
}
self.assertEqual(expected_chunks, result)
def test_chunks_with_default_config(self):
@@ -37,11 +39,13 @@ class TestImageChunker(unittest.TestCase):
image_path = "./tmp/image.jpeg"
result = chunker.create_chunks(MockLoader(), image_path)
expected_chunks = {'doc_id': '123',
'documents': [image_path],
'embeddings': ['embedding'],
'ids': ['140bedbf9c3f6d56a9846d2ba7088798683f4da0c248231336e6a05679e4fdfe'],
'metadatas': [{'data_type': 'images', 'doc_id': '123', 'url': 'none'}]}
expected_chunks = {
"doc_id": "123",
"documents": [image_path],
"embeddings": ["embedding"],
"ids": ["140bedbf9c3f6d56a9846d2ba7088798683f4da0c248231336e6a05679e4fdfe"],
"metadatas": [{"data_type": "images", "doc_id": "123", "url": "none"}],
}
self.assertEqual(expected_chunks, result)
def test_word_count(self):

View File

@@ -1,29 +1,23 @@
import tempfile
import unittest
import os
import tempfile
import urllib
from PIL import Image
from embedchain.models.clip_processor import ClipProcessor
class ClipProcessorTest(unittest.TestCase):
class TestClipProcessor:
def test_load_model(self):
# Test that the `load_model()` method loads the CLIP model and image preprocessing correctly.
model, preprocess = ClipProcessor.load_model()
# Assert that the model is not None.
self.assertIsNotNone(model)
# Assert that the preprocess is not None.
self.assertIsNotNone(preprocess)
assert model is not None
assert preprocess is not None
def test_get_image_features(self):
# Clone the image to a temporary folder.
with tempfile.TemporaryDirectory() as tmp_dir:
urllib.request.urlretrieve(
'https://upload.wikimedia.org/wikipedia/en/a/a9/Example.jpg',
"image.jpg")
urllib.request.urlretrieve("https://upload.wikimedia.org/wikipedia/en/a/a9/Example.jpg", "image.jpg")
image = Image.open("image.jpg")
image.save(os.path.join(tmp_dir, "image.jpg"))
@@ -35,9 +29,6 @@ class ClipProcessorTest(unittest.TestCase):
# Delete the temporary file.
os.remove(os.path.join(tmp_dir, "image.jpg"))
# Assert that the test passes.
self.assertTrue(True)
def test_get_text_features(self):
# Test that the `get_text_features()` method returns a list containing the text embedding.
query = "This is a text query."
@@ -46,10 +37,10 @@ class ClipProcessorTest(unittest.TestCase):
text_features = ClipProcessor.get_text_features(query)
# Assert that the text embedding is not None.
self.assertIsNotNone(text_features)
assert text_features is not None
# Assert that the text embedding is a list of floats.
self.assertIsInstance(text_features, list)
assert isinstance(text_features, list)
# Assert that the text embedding has the correct length.
self.assertEqual(len(text_features), 512)
assert len(text_features) == 512

View File

@@ -197,21 +197,29 @@ class TestChromaDbCollection(unittest.TestCase):
# Collection should be empty when created
self.assertEqual(self.app_with_settings.db.count(), 0)
self.app_with_settings.db.add(embeddings=[[0, 0, 0]], documents=["document"], metadatas=[{"value": "somevalue"}], ids=["id"], skip_embedding=True)
self.app_with_settings.db.add(
embeddings=[[0, 0, 0]],
documents=["document"],
metadatas=[{"value": "somevalue"}],
ids=["id"],
skip_embedding=True,
)
# After adding, should contain one item
self.assertEqual(self.app_with_settings.db.count(), 1)
# Validate if the get utility of the database is working as expected
data = self.app_with_settings.db.get(["id"], limit=1)
expected_value = {'documents': ['document'],
'embeddings': None,
'ids': ['id'],
'metadatas': [{'value': 'somevalue'}]}
expected_value = {
"documents": ["document"],
"embeddings": None,
"ids": ["id"],
"metadatas": [{"value": "somevalue"}],
}
self.assertEqual(data, expected_value)
# Validate if the query utility of the database is working as expected
data = self.app_with_settings.db.query(input_query=[0, 0, 0], where={}, n_results=1, skip_embedding=True)
expected_value = ['document']
expected_value = ["document"]
self.assertEqual(data, expected_value)
def test_collections_are_persistent(self):

View File

@@ -4,11 +4,11 @@ from unittest.mock import patch
from embedchain import App
from embedchain.config import AppConfig, ElasticsearchDBConfig
from embedchain.vectordb.elasticsearch import ElasticsearchDB
from embedchain.embedder.gpt4all import GPT4AllEmbedder
from embedchain.vectordb.elasticsearch import ElasticsearchDB
class TestEsDB(unittest.TestCase):
@patch("embedchain.vectordb.elasticsearch.Elasticsearch")
def test_setUp(self, mock_client):
self.db = ElasticsearchDB(config=ElasticsearchDBConfig(es_url="https://localhost:9200"))
@@ -37,17 +37,11 @@ class TestEsDB(unittest.TestCase):
# Add the data to the database.
self.db.add(embeddings, documents, metadatas, ids, skip_embedding=False)
search_response = {"hits":
{"hits":
[
{
"_source": {"text": "This is a document."},
"_score": 0.9
},
{
"_source": {"text": "This is another document."},
"_score": 0.8
}
search_response = {
"hits": {
"hits": [
{"_source": {"text": "This is a document."}, "_score": 0.9},
{"_source": {"text": "This is another document."}, "_score": 0.8},
]
}
}
@@ -80,17 +74,11 @@ class TestEsDB(unittest.TestCase):
# Add the data to the database.
self.db.add(embeddings, documents, metadatas, ids, skip_embedding=True)
search_response = {"hits":
{"hits":
[
{
"_source": {"text": "This is a document."},
"_score": 0.9
},
{
"_source": {"text": "This is another document."},
"_score": 0.8
}
search_response = {
"hits": {
"hits": [
{"_source": {"text": "This is a document."}, "_score": 0.9},
{"_source": {"text": "This is another document."}, "_score": 0.8},
]
}
}