Adding autogen cookbook to help provide options of integration with a multi-agent framework (#1908)
This commit is contained in:
0
cookbooks/helper/__init__.py
Normal file
0
cookbooks/helper/__init__.py
Normal file
169
cookbooks/helper/mem0_teachability.py
Normal file
169
cookbooks/helper/mem0_teachability.py
Normal file
@@ -0,0 +1,169 @@
|
||||
# Copyright (c) 2023 - 2024, Owners of https://github.com/autogen-ai
|
||||
#
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
#
|
||||
# Portions derived from https://github.com/microsoft/autogen are under the MIT License.
|
||||
# SPDX-License-Identifier: MIT
|
||||
# forked from autogen.agentchat.contrib.capabilities.teachability.Teachability
|
||||
|
||||
from typing import Dict, Optional, Union
|
||||
from autogen.agentchat.assistant_agent import ConversableAgent
|
||||
from autogen.agentchat.contrib.capabilities.agent_capability import AgentCapability
|
||||
from autogen.agentchat.contrib.text_analyzer_agent import TextAnalyzerAgent
|
||||
from termcolor import colored
|
||||
from mem0 import Memory
|
||||
from mem0.configs.base import MemoryConfig
|
||||
|
||||
class Mem0Teachability(AgentCapability):
|
||||
def __init__(
|
||||
self,
|
||||
verbosity: Optional[int] = 0,
|
||||
reset_db: Optional[bool] = False,
|
||||
recall_threshold: Optional[float] = 1.5,
|
||||
max_num_retrievals: Optional[int] = 10,
|
||||
llm_config: Optional[Union[Dict, bool]] = None,
|
||||
agent_id: Optional[str] = None,
|
||||
memory_client: Optional[Memory] = None,
|
||||
):
|
||||
self.verbosity = verbosity
|
||||
self.recall_threshold = recall_threshold
|
||||
self.max_num_retrievals = max_num_retrievals
|
||||
self.llm_config = llm_config
|
||||
self.analyzer = None
|
||||
self.teachable_agent = None
|
||||
self.agent_id = agent_id
|
||||
self.memory = memory_client if memory_client else Memory()
|
||||
|
||||
if reset_db:
|
||||
self.memory.reset()
|
||||
|
||||
def add_to_agent(self, agent: ConversableAgent):
|
||||
self.teachable_agent = agent
|
||||
agent.register_hook(hookable_method="process_last_received_message", hook=self.process_last_received_message)
|
||||
|
||||
if self.llm_config is None:
|
||||
self.llm_config = agent.llm_config
|
||||
assert self.llm_config, "Teachability requires a valid llm_config."
|
||||
|
||||
self.analyzer = TextAnalyzerAgent(llm_config=self.llm_config)
|
||||
|
||||
agent.update_system_message(
|
||||
agent.system_message
|
||||
+ "\nYou've been given the special ability to remember user teachings from prior conversations."
|
||||
)
|
||||
|
||||
def process_last_received_message(self, text: Union[Dict, str]):
|
||||
expanded_text = text
|
||||
if self.memory.get_all(agent_id=self.agent_id):
|
||||
expanded_text = self._consider_memo_retrieval(text)
|
||||
self._consider_memo_storage(text)
|
||||
return expanded_text
|
||||
|
||||
def _consider_memo_storage(self, comment: Union[Dict, str]):
|
||||
memo_added = False
|
||||
response = self._analyze(
|
||||
comment,
|
||||
"Does any part of the TEXT ask the agent to perform a task or solve a problem? Answer with just one word, yes or no.",
|
||||
)
|
||||
|
||||
if "yes" in response.lower():
|
||||
advice = self._analyze(
|
||||
comment,
|
||||
"Briefly copy any advice from the TEXT that may be useful for a similar but different task in the future. But if no advice is present, just respond with 'none'.",
|
||||
)
|
||||
|
||||
if "none" not in advice.lower():
|
||||
task = self._analyze(
|
||||
comment,
|
||||
"Briefly copy just the task from the TEXT, then stop. Don't solve it, and don't include any advice.",
|
||||
)
|
||||
|
||||
general_task = self._analyze(
|
||||
task,
|
||||
"Summarize very briefly, in general terms, the type of task described in the TEXT. Leave out details that might not appear in a similar problem.",
|
||||
)
|
||||
|
||||
if self.verbosity >= 1:
|
||||
print(colored("\nREMEMBER THIS TASK-ADVICE PAIR", "light_yellow"))
|
||||
self.memory.add([{"role": "user", "content": f"Task: {general_task}\nAdvice: {advice}"}], agent_id=self.agent_id)
|
||||
memo_added = True
|
||||
|
||||
response = self._analyze(
|
||||
comment,
|
||||
"Does the TEXT contain information that could be committed to memory? Answer with just one word, yes or no.",
|
||||
)
|
||||
|
||||
if "yes" in response.lower():
|
||||
question = self._analyze(
|
||||
comment,
|
||||
"Imagine that the user forgot this information in the TEXT. How would they ask you for this information? Include no other text in your response.",
|
||||
)
|
||||
|
||||
answer = self._analyze(
|
||||
comment, "Copy the information from the TEXT that should be committed to memory. Add no explanation."
|
||||
)
|
||||
|
||||
if self.verbosity >= 1:
|
||||
print(colored("\nREMEMBER THIS QUESTION-ANSWER PAIR", "light_yellow"))
|
||||
self.memory.add([{"role": "user", "content": f"Question: {question}\nAnswer: {answer}"}], agent_id=self.agent_id)
|
||||
memo_added = True
|
||||
|
||||
def _consider_memo_retrieval(self, comment: Union[Dict, str]):
|
||||
if self.verbosity >= 1:
|
||||
print(colored("\nLOOK FOR RELEVANT MEMOS, AS QUESTION-ANSWER PAIRS", "light_yellow"))
|
||||
memo_list = self._retrieve_relevant_memos(comment)
|
||||
|
||||
response = self._analyze(
|
||||
comment,
|
||||
"Does any part of the TEXT ask the agent to perform a task or solve a problem? Answer with just one word, yes or no.",
|
||||
)
|
||||
|
||||
if "yes" in response.lower():
|
||||
if self.verbosity >= 1:
|
||||
print(colored("\nLOOK FOR RELEVANT MEMOS, AS TASK-ADVICE PAIRS", "light_yellow"))
|
||||
task = self._analyze(
|
||||
comment, "Copy just the task from the TEXT, then stop. Don't solve it, and don't include any advice."
|
||||
)
|
||||
|
||||
general_task = self._analyze(
|
||||
task,
|
||||
"Summarize very briefly, in general terms, the type of task described in the TEXT. Leave out details that might not appear in a similar problem.",
|
||||
)
|
||||
|
||||
memo_list.extend(self._retrieve_relevant_memos(general_task))
|
||||
|
||||
memo_list = list(set(memo_list))
|
||||
return comment + self._concatenate_memo_texts(memo_list)
|
||||
|
||||
def _retrieve_relevant_memos(self, input_text: str) -> list:
|
||||
search_results = self.memory.search(input_text, agent_id=self.agent_id, limit=self.max_num_retrievals)
|
||||
memo_list = [result["memory"] for result in search_results if result["score"] <= self.recall_threshold]
|
||||
|
||||
if self.verbosity >= 1 and not memo_list:
|
||||
print(colored("\nTHE CLOSEST MEMO IS BEYOND THE THRESHOLD:", "light_yellow"))
|
||||
if search_results["results"]:
|
||||
print(search_results["results"][0])
|
||||
print()
|
||||
|
||||
return memo_list
|
||||
|
||||
def _concatenate_memo_texts(self, memo_list: list) -> str:
|
||||
memo_texts = ""
|
||||
if memo_list:
|
||||
info = "\n# Memories that might help\n"
|
||||
for memo in memo_list:
|
||||
info += f"- {memo}\n"
|
||||
if self.verbosity >= 1:
|
||||
print(colored(f"\nMEMOS APPENDED TO LAST MESSAGE...\n{info}\n", "light_yellow"))
|
||||
memo_texts += "\n" + info
|
||||
return memo_texts
|
||||
|
||||
def _analyze(self, text_to_analyze: Union[Dict, str], analysis_instructions: Union[Dict, str]):
|
||||
self.analyzer.reset()
|
||||
self.teachable_agent.send(
|
||||
recipient=self.analyzer, message=text_to_analyze, request_reply=False, silent=(self.verbosity < 2)
|
||||
)
|
||||
self.teachable_agent.send(
|
||||
recipient=self.analyzer, message=analysis_instructions, request_reply=True, silent=(self.verbosity < 2)
|
||||
)
|
||||
return self.teachable_agent.last_message(self.analyzer)["content"]
|
||||
1221
cookbooks/mem0-autogen.ipynb
Normal file
1221
cookbooks/mem0-autogen.ipynb
Normal file
File diff suppressed because it is too large
Load Diff
Reference in New Issue
Block a user