Support Azure OpenAI LLM (#1581)
This commit is contained in:
@@ -16,7 +16,7 @@ Mem0 includes built-in support for various popular large language models. Memory
|
|||||||
<Card title="Google AI" href="#google-ai"></Card>
|
<Card title="Google AI" href="#google-ai"></Card>
|
||||||
<Card title="Anthropic" href="#anthropic"></Card>
|
<Card title="Anthropic" href="#anthropic"></Card>
|
||||||
<Card title="Mistral AI" href="#mistral-ai"></Card>
|
<Card title="Mistral AI" href="#mistral-ai"></Card>
|
||||||
<Card title="OpenAI Azure" href="#openai-azure"></Card>
|
<Card title="Azure OpenAI" href="#azure-openai"></Card>
|
||||||
</CardGroup>
|
</CardGroup>
|
||||||
|
|
||||||
## OpenAI
|
## OpenAI
|
||||||
@@ -263,26 +263,23 @@ m = Memory.from_config(config)
|
|||||||
m.add("Likes to play cricket on weekends", user_id="alice", metadata={"category": "hobbies"})
|
m.add("Likes to play cricket on weekends", user_id="alice", metadata={"category": "hobbies"})
|
||||||
```
|
```
|
||||||
|
|
||||||
## OpenAI Azure
|
## Azure OpenAI
|
||||||
|
|
||||||
To use Azure AI models, you have to set the `AZURE_API_KEY`, `AZURE_API_BASE`, and `AZURE_API_VERSION` environment variables. You can obtain the Azure API key from the [Azure](https://azure.microsoft.com/).
|
To use Azure OpenAI models, you have to set the `AZURE_OPENAI_API_KEY`, `AZURE_OPENAI_ENDPOINT`, and `OPENAI_API_VERSION` environment variables. You can obtain the Azure API key from the [Azure](https://azure.microsoft.com/).
|
||||||
|
|
||||||
```python
|
```python
|
||||||
import os
|
import os
|
||||||
from mem0 import Memory
|
from mem0 import Memory
|
||||||
|
|
||||||
|
os.environ["AZURE_OPENAI_API_KEY"] = "your-api-key"
|
||||||
os.environ["AZURE_API_KEY"] = "your-api-key"
|
os.environ["AZURE_OPENAI_ENDPOINT"] = "your-api-base-url"
|
||||||
|
os.environ["OPENAI_API_VERSION"] = "version-to-use"
|
||||||
# Needed to use custom models
|
|
||||||
os.environ["AZURE_API_BASE"] = "your-api-base-url"
|
|
||||||
os.environ["AZURE_API_VERSION"] = "version-to-use"
|
|
||||||
|
|
||||||
config = {
|
config = {
|
||||||
"llm": {
|
"llm": {
|
||||||
"provider": "litellm",
|
"provider": "azure_openai",
|
||||||
"config": {
|
"config": {
|
||||||
"model": "azure_ai/command-r-plus",
|
"model": "your-deployment-name",
|
||||||
"temperature": 0.1,
|
"temperature": 0.1,
|
||||||
"max_tokens": 2000,
|
"max_tokens": 2000,
|
||||||
}
|
}
|
||||||
|
|||||||
80
mem0/llms/azure_openai.py
Normal file
80
mem0/llms/azure_openai.py
Normal file
@@ -0,0 +1,80 @@
|
|||||||
|
import json
|
||||||
|
from typing import Dict, List, Optional
|
||||||
|
|
||||||
|
from openai import AzureOpenAI
|
||||||
|
|
||||||
|
from mem0.llms.base import LLMBase
|
||||||
|
from mem0.configs.llms.base import BaseLlmConfig
|
||||||
|
|
||||||
|
class AzureOpenAILLM(LLMBase):
|
||||||
|
def __init__(self, config: Optional[BaseLlmConfig] = None):
|
||||||
|
super().__init__(config)
|
||||||
|
|
||||||
|
# Model name should match the custom deployment name chosen for it.
|
||||||
|
if not self.config.model:
|
||||||
|
self.config.model="gpt-4o"
|
||||||
|
self.client = AzureOpenAI()
|
||||||
|
|
||||||
|
def _parse_response(self, response, tools):
|
||||||
|
"""
|
||||||
|
Process the response based on whether tools are used or not.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
response: The raw response from API.
|
||||||
|
tools: The list of tools provided in the request.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
str or dict: The processed response.
|
||||||
|
"""
|
||||||
|
if tools:
|
||||||
|
processed_response = {
|
||||||
|
"content": response.choices[0].message.content,
|
||||||
|
"tool_calls": []
|
||||||
|
}
|
||||||
|
|
||||||
|
if response.choices[0].message.tool_calls:
|
||||||
|
for tool_call in response.choices[0].message.tool_calls:
|
||||||
|
processed_response["tool_calls"].append({
|
||||||
|
"name": tool_call.function.name,
|
||||||
|
"arguments": json.loads(tool_call.function.arguments)
|
||||||
|
})
|
||||||
|
|
||||||
|
return processed_response
|
||||||
|
else:
|
||||||
|
return response.choices[0].message.content
|
||||||
|
|
||||||
|
|
||||||
|
def generate_response(
|
||||||
|
self,
|
||||||
|
messages: List[Dict[str, str]],
|
||||||
|
response_format=None,
|
||||||
|
tools: Optional[List[Dict]] = None,
|
||||||
|
tool_choice: str = "auto",
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
Generate a response based on the given messages using Azure OpenAI.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
messages (list): List of message dicts containing 'role' and 'content'.
|
||||||
|
response_format (str or object, optional): Format of the response. Defaults to "text".
|
||||||
|
tools (list, optional): List of tools that the model can call. Defaults to None.
|
||||||
|
tool_choice (str, optional): Tool choice method. Defaults to "auto".
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
str: The generated response.
|
||||||
|
"""
|
||||||
|
params = {
|
||||||
|
"model": self.config.model,
|
||||||
|
"messages": messages,
|
||||||
|
"temperature": self.config.temperature,
|
||||||
|
"max_tokens": self.config.max_tokens,
|
||||||
|
"top_p": self.config.top_p
|
||||||
|
}
|
||||||
|
if response_format:
|
||||||
|
params["response_format"] = response_format
|
||||||
|
if tools:
|
||||||
|
params["tools"] = tools
|
||||||
|
params["tool_choice"] = tool_choice
|
||||||
|
|
||||||
|
response = self.client.chat.completions.create(**params)
|
||||||
|
return self._parse_response(response, tools)
|
||||||
@@ -14,7 +14,7 @@ class LlmConfig(BaseModel):
|
|||||||
@field_validator("config")
|
@field_validator("config")
|
||||||
def validate_config(cls, v, values):
|
def validate_config(cls, v, values):
|
||||||
provider = values.data.get("provider")
|
provider = values.data.get("provider")
|
||||||
if provider in ("openai", "ollama", "groq", "together", "aws_bedrock", "litellm"):
|
if provider in ("openai", "ollama", "groq", "together", "aws_bedrock", "litellm", "azure_openai"):
|
||||||
return v
|
return v
|
||||||
else:
|
else:
|
||||||
raise ValueError(f"Unsupported LLM provider: {provider}")
|
raise ValueError(f"Unsupported LLM provider: {provider}")
|
||||||
|
|||||||
@@ -18,6 +18,7 @@ class LlmFactory:
|
|||||||
"aws_bedrock": "mem0.llms.aws_bedrock.AWSBedrockLLM",
|
"aws_bedrock": "mem0.llms.aws_bedrock.AWSBedrockLLM",
|
||||||
"litellm": "mem0.llms.litellm.LiteLLM",
|
"litellm": "mem0.llms.litellm.LiteLLM",
|
||||||
"ollama": "mem0.llms.ollama.OllamaLLM",
|
"ollama": "mem0.llms.ollama.OllamaLLM",
|
||||||
|
"azure_openai": "mem0.llms.azure_openai.AzureOpenAILLM",
|
||||||
}
|
}
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
|
|||||||
94
tests/llms/test_azure_openai.py
Normal file
94
tests/llms/test_azure_openai.py
Normal file
@@ -0,0 +1,94 @@
|
|||||||
|
import pytest
|
||||||
|
from unittest.mock import Mock, patch
|
||||||
|
from mem0.llms.azure_openai import AzureOpenAILLM
|
||||||
|
from mem0.configs.llms.base import BaseLlmConfig
|
||||||
|
|
||||||
|
MODEL = "gpt-4o" # or your custom deployment name
|
||||||
|
TEMPERATURE = 0.7
|
||||||
|
MAX_TOKENS = 100
|
||||||
|
TOP_P = 1.0
|
||||||
|
|
||||||
|
@pytest.fixture
|
||||||
|
def mock_openai_client():
|
||||||
|
with patch('mem0.llms.azure_openai.AzureOpenAI') as mock_openai:
|
||||||
|
mock_client = Mock()
|
||||||
|
mock_openai.return_value = mock_client
|
||||||
|
yield mock_client
|
||||||
|
|
||||||
|
def test_generate_response_without_tools(mock_openai_client):
|
||||||
|
config = BaseLlmConfig(model=MODEL, temperature=TEMPERATURE, max_tokens=MAX_TOKENS, top_p=TOP_P)
|
||||||
|
llm = AzureOpenAILLM(config)
|
||||||
|
messages = [
|
||||||
|
{"role": "system", "content": "You are a helpful assistant."},
|
||||||
|
{"role": "user", "content": "Hello, how are you?"}
|
||||||
|
]
|
||||||
|
|
||||||
|
mock_response = Mock()
|
||||||
|
mock_response.choices = [Mock(message=Mock(content="I'm doing well, thank you for asking!"))]
|
||||||
|
mock_openai_client.chat.completions.create.return_value = mock_response
|
||||||
|
|
||||||
|
response = llm.generate_response(messages)
|
||||||
|
|
||||||
|
mock_openai_client.chat.completions.create.assert_called_once_with(
|
||||||
|
model=MODEL,
|
||||||
|
messages=messages,
|
||||||
|
temperature=TEMPERATURE,
|
||||||
|
max_tokens=MAX_TOKENS,
|
||||||
|
top_p=TOP_P
|
||||||
|
)
|
||||||
|
assert response == "I'm doing well, thank you for asking!"
|
||||||
|
|
||||||
|
|
||||||
|
def test_generate_response_with_tools(mock_openai_client):
|
||||||
|
config = BaseLlmConfig(model=MODEL, temperature=TEMPERATURE, max_tokens=MAX_TOKENS, top_p=TOP_P)
|
||||||
|
llm = AzureOpenAILLM(config)
|
||||||
|
messages = [
|
||||||
|
{"role": "system", "content": "You are a helpful assistant."},
|
||||||
|
{"role": "user", "content": "Add a new memory: Today is a sunny day."}
|
||||||
|
]
|
||||||
|
tools = [
|
||||||
|
{
|
||||||
|
"type": "function",
|
||||||
|
"function": {
|
||||||
|
"name": "add_memory",
|
||||||
|
"description": "Add a memory",
|
||||||
|
"parameters": {
|
||||||
|
"type": "object",
|
||||||
|
"properties": {
|
||||||
|
"data": {"type": "string", "description": "Data to add to memory"}
|
||||||
|
},
|
||||||
|
"required": ["data"],
|
||||||
|
},
|
||||||
|
},
|
||||||
|
}
|
||||||
|
]
|
||||||
|
|
||||||
|
mock_response = Mock()
|
||||||
|
mock_message = Mock()
|
||||||
|
mock_message.content = "I've added the memory for you."
|
||||||
|
|
||||||
|
mock_tool_call = Mock()
|
||||||
|
mock_tool_call.function.name = "add_memory"
|
||||||
|
mock_tool_call.function.arguments = '{"data": "Today is a sunny day."}'
|
||||||
|
|
||||||
|
mock_message.tool_calls = [mock_tool_call]
|
||||||
|
mock_response.choices = [Mock(message=mock_message)]
|
||||||
|
mock_openai_client.chat.completions.create.return_value = mock_response
|
||||||
|
|
||||||
|
response = llm.generate_response(messages, tools=tools)
|
||||||
|
|
||||||
|
mock_openai_client.chat.completions.create.assert_called_once_with(
|
||||||
|
model=MODEL,
|
||||||
|
messages=messages,
|
||||||
|
temperature=TEMPERATURE,
|
||||||
|
max_tokens=MAX_TOKENS,
|
||||||
|
top_p=TOP_P,
|
||||||
|
tools=tools,
|
||||||
|
tool_choice="auto"
|
||||||
|
)
|
||||||
|
|
||||||
|
assert response["content"] == "I've added the memory for you."
|
||||||
|
assert len(response["tool_calls"]) == 1
|
||||||
|
assert response["tool_calls"][0]["name"] == "add_memory"
|
||||||
|
assert response["tool_calls"][0]["arguments"] == {'data': 'Today is a sunny day.'}
|
||||||
|
|
||||||
Reference in New Issue
Block a user