Support Azure OpenAI LLM (#1581)
This commit is contained in:
@@ -16,7 +16,7 @@ Mem0 includes built-in support for various popular large language models. Memory
|
||||
<Card title="Google AI" href="#google-ai"></Card>
|
||||
<Card title="Anthropic" href="#anthropic"></Card>
|
||||
<Card title="Mistral AI" href="#mistral-ai"></Card>
|
||||
<Card title="OpenAI Azure" href="#openai-azure"></Card>
|
||||
<Card title="Azure OpenAI" href="#azure-openai"></Card>
|
||||
</CardGroup>
|
||||
|
||||
## OpenAI
|
||||
@@ -263,26 +263,23 @@ m = Memory.from_config(config)
|
||||
m.add("Likes to play cricket on weekends", user_id="alice", metadata={"category": "hobbies"})
|
||||
```
|
||||
|
||||
## OpenAI Azure
|
||||
## Azure OpenAI
|
||||
|
||||
To use Azure AI models, you have to set the `AZURE_API_KEY`, `AZURE_API_BASE`, and `AZURE_API_VERSION` environment variables. You can obtain the Azure API key from the [Azure](https://azure.microsoft.com/).
|
||||
To use Azure OpenAI models, you have to set the `AZURE_OPENAI_API_KEY`, `AZURE_OPENAI_ENDPOINT`, and `OPENAI_API_VERSION` environment variables. You can obtain the Azure API key from the [Azure](https://azure.microsoft.com/).
|
||||
|
||||
```python
|
||||
import os
|
||||
from mem0 import Memory
|
||||
|
||||
|
||||
os.environ["AZURE_API_KEY"] = "your-api-key"
|
||||
|
||||
# Needed to use custom models
|
||||
os.environ["AZURE_API_BASE"] = "your-api-base-url"
|
||||
os.environ["AZURE_API_VERSION"] = "version-to-use"
|
||||
os.environ["AZURE_OPENAI_API_KEY"] = "your-api-key"
|
||||
os.environ["AZURE_OPENAI_ENDPOINT"] = "your-api-base-url"
|
||||
os.environ["OPENAI_API_VERSION"] = "version-to-use"
|
||||
|
||||
config = {
|
||||
"llm": {
|
||||
"provider": "litellm",
|
||||
"provider": "azure_openai",
|
||||
"config": {
|
||||
"model": "azure_ai/command-r-plus",
|
||||
"model": "your-deployment-name",
|
||||
"temperature": 0.1,
|
||||
"max_tokens": 2000,
|
||||
}
|
||||
|
||||
80
mem0/llms/azure_openai.py
Normal file
80
mem0/llms/azure_openai.py
Normal file
@@ -0,0 +1,80 @@
|
||||
import json
|
||||
from typing import Dict, List, Optional
|
||||
|
||||
from openai import AzureOpenAI
|
||||
|
||||
from mem0.llms.base import LLMBase
|
||||
from mem0.configs.llms.base import BaseLlmConfig
|
||||
|
||||
class AzureOpenAILLM(LLMBase):
|
||||
def __init__(self, config: Optional[BaseLlmConfig] = None):
|
||||
super().__init__(config)
|
||||
|
||||
# Model name should match the custom deployment name chosen for it.
|
||||
if not self.config.model:
|
||||
self.config.model="gpt-4o"
|
||||
self.client = AzureOpenAI()
|
||||
|
||||
def _parse_response(self, response, tools):
|
||||
"""
|
||||
Process the response based on whether tools are used or not.
|
||||
|
||||
Args:
|
||||
response: The raw response from API.
|
||||
tools: The list of tools provided in the request.
|
||||
|
||||
Returns:
|
||||
str or dict: The processed response.
|
||||
"""
|
||||
if tools:
|
||||
processed_response = {
|
||||
"content": response.choices[0].message.content,
|
||||
"tool_calls": []
|
||||
}
|
||||
|
||||
if response.choices[0].message.tool_calls:
|
||||
for tool_call in response.choices[0].message.tool_calls:
|
||||
processed_response["tool_calls"].append({
|
||||
"name": tool_call.function.name,
|
||||
"arguments": json.loads(tool_call.function.arguments)
|
||||
})
|
||||
|
||||
return processed_response
|
||||
else:
|
||||
return response.choices[0].message.content
|
||||
|
||||
|
||||
def generate_response(
|
||||
self,
|
||||
messages: List[Dict[str, str]],
|
||||
response_format=None,
|
||||
tools: Optional[List[Dict]] = None,
|
||||
tool_choice: str = "auto",
|
||||
):
|
||||
"""
|
||||
Generate a response based on the given messages using Azure OpenAI.
|
||||
|
||||
Args:
|
||||
messages (list): List of message dicts containing 'role' and 'content'.
|
||||
response_format (str or object, optional): Format of the response. Defaults to "text".
|
||||
tools (list, optional): List of tools that the model can call. Defaults to None.
|
||||
tool_choice (str, optional): Tool choice method. Defaults to "auto".
|
||||
|
||||
Returns:
|
||||
str: The generated response.
|
||||
"""
|
||||
params = {
|
||||
"model": self.config.model,
|
||||
"messages": messages,
|
||||
"temperature": self.config.temperature,
|
||||
"max_tokens": self.config.max_tokens,
|
||||
"top_p": self.config.top_p
|
||||
}
|
||||
if response_format:
|
||||
params["response_format"] = response_format
|
||||
if tools:
|
||||
params["tools"] = tools
|
||||
params["tool_choice"] = tool_choice
|
||||
|
||||
response = self.client.chat.completions.create(**params)
|
||||
return self._parse_response(response, tools)
|
||||
@@ -14,7 +14,7 @@ class LlmConfig(BaseModel):
|
||||
@field_validator("config")
|
||||
def validate_config(cls, v, values):
|
||||
provider = values.data.get("provider")
|
||||
if provider in ("openai", "ollama", "groq", "together", "aws_bedrock", "litellm"):
|
||||
if provider in ("openai", "ollama", "groq", "together", "aws_bedrock", "litellm", "azure_openai"):
|
||||
return v
|
||||
else:
|
||||
raise ValueError(f"Unsupported LLM provider: {provider}")
|
||||
|
||||
@@ -18,6 +18,7 @@ class LlmFactory:
|
||||
"aws_bedrock": "mem0.llms.aws_bedrock.AWSBedrockLLM",
|
||||
"litellm": "mem0.llms.litellm.LiteLLM",
|
||||
"ollama": "mem0.llms.ollama.OllamaLLM",
|
||||
"azure_openai": "mem0.llms.azure_openai.AzureOpenAILLM",
|
||||
}
|
||||
|
||||
@classmethod
|
||||
|
||||
94
tests/llms/test_azure_openai.py
Normal file
94
tests/llms/test_azure_openai.py
Normal file
@@ -0,0 +1,94 @@
|
||||
import pytest
|
||||
from unittest.mock import Mock, patch
|
||||
from mem0.llms.azure_openai import AzureOpenAILLM
|
||||
from mem0.configs.llms.base import BaseLlmConfig
|
||||
|
||||
MODEL = "gpt-4o" # or your custom deployment name
|
||||
TEMPERATURE = 0.7
|
||||
MAX_TOKENS = 100
|
||||
TOP_P = 1.0
|
||||
|
||||
@pytest.fixture
|
||||
def mock_openai_client():
|
||||
with patch('mem0.llms.azure_openai.AzureOpenAI') as mock_openai:
|
||||
mock_client = Mock()
|
||||
mock_openai.return_value = mock_client
|
||||
yield mock_client
|
||||
|
||||
def test_generate_response_without_tools(mock_openai_client):
|
||||
config = BaseLlmConfig(model=MODEL, temperature=TEMPERATURE, max_tokens=MAX_TOKENS, top_p=TOP_P)
|
||||
llm = AzureOpenAILLM(config)
|
||||
messages = [
|
||||
{"role": "system", "content": "You are a helpful assistant."},
|
||||
{"role": "user", "content": "Hello, how are you?"}
|
||||
]
|
||||
|
||||
mock_response = Mock()
|
||||
mock_response.choices = [Mock(message=Mock(content="I'm doing well, thank you for asking!"))]
|
||||
mock_openai_client.chat.completions.create.return_value = mock_response
|
||||
|
||||
response = llm.generate_response(messages)
|
||||
|
||||
mock_openai_client.chat.completions.create.assert_called_once_with(
|
||||
model=MODEL,
|
||||
messages=messages,
|
||||
temperature=TEMPERATURE,
|
||||
max_tokens=MAX_TOKENS,
|
||||
top_p=TOP_P
|
||||
)
|
||||
assert response == "I'm doing well, thank you for asking!"
|
||||
|
||||
|
||||
def test_generate_response_with_tools(mock_openai_client):
|
||||
config = BaseLlmConfig(model=MODEL, temperature=TEMPERATURE, max_tokens=MAX_TOKENS, top_p=TOP_P)
|
||||
llm = AzureOpenAILLM(config)
|
||||
messages = [
|
||||
{"role": "system", "content": "You are a helpful assistant."},
|
||||
{"role": "user", "content": "Add a new memory: Today is a sunny day."}
|
||||
]
|
||||
tools = [
|
||||
{
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": "add_memory",
|
||||
"description": "Add a memory",
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"data": {"type": "string", "description": "Data to add to memory"}
|
||||
},
|
||||
"required": ["data"],
|
||||
},
|
||||
},
|
||||
}
|
||||
]
|
||||
|
||||
mock_response = Mock()
|
||||
mock_message = Mock()
|
||||
mock_message.content = "I've added the memory for you."
|
||||
|
||||
mock_tool_call = Mock()
|
||||
mock_tool_call.function.name = "add_memory"
|
||||
mock_tool_call.function.arguments = '{"data": "Today is a sunny day."}'
|
||||
|
||||
mock_message.tool_calls = [mock_tool_call]
|
||||
mock_response.choices = [Mock(message=mock_message)]
|
||||
mock_openai_client.chat.completions.create.return_value = mock_response
|
||||
|
||||
response = llm.generate_response(messages, tools=tools)
|
||||
|
||||
mock_openai_client.chat.completions.create.assert_called_once_with(
|
||||
model=MODEL,
|
||||
messages=messages,
|
||||
temperature=TEMPERATURE,
|
||||
max_tokens=MAX_TOKENS,
|
||||
top_p=TOP_P,
|
||||
tools=tools,
|
||||
tool_choice="auto"
|
||||
)
|
||||
|
||||
assert response["content"] == "I've added the memory for you."
|
||||
assert len(response["tool_calls"]) == 1
|
||||
assert response["tool_calls"][0]["name"] == "add_memory"
|
||||
assert response["tool_calls"][0]["arguments"] == {'data': 'Today is a sunny day.'}
|
||||
|
||||
Reference in New Issue
Block a user