Support Azure OpenAI LLM (#1581)

This commit is contained in:
Mitul Kataria
2024-08-04 00:01:43 +09:00
committed by GitHub
parent 504a87d799
commit 81b4431c9b
5 changed files with 184 additions and 12 deletions

View File

@@ -16,7 +16,7 @@ Mem0 includes built-in support for various popular large language models. Memory
<Card title="Google AI" href="#google-ai"></Card>
<Card title="Anthropic" href="#anthropic"></Card>
<Card title="Mistral AI" href="#mistral-ai"></Card>
<Card title="OpenAI Azure" href="#openai-azure"></Card>
<Card title="Azure OpenAI" href="#azure-openai"></Card>
</CardGroup>
## OpenAI
@@ -263,26 +263,23 @@ m = Memory.from_config(config)
m.add("Likes to play cricket on weekends", user_id="alice", metadata={"category": "hobbies"})
```
## OpenAI Azure
## Azure OpenAI
To use Azure AI models, you have to set the `AZURE_API_KEY`, `AZURE_API_BASE`, and `AZURE_API_VERSION` environment variables. You can obtain the Azure API key from the [Azure](https://azure.microsoft.com/).
To use Azure OpenAI models, you have to set the `AZURE_OPENAI_API_KEY`, `AZURE_OPENAI_ENDPOINT`, and `OPENAI_API_VERSION` environment variables. You can obtain the Azure API key from the [Azure](https://azure.microsoft.com/).
```python
import os
from mem0 import Memory
os.environ["AZURE_API_KEY"] = "your-api-key"
# Needed to use custom models
os.environ["AZURE_API_BASE"] = "your-api-base-url"
os.environ["AZURE_API_VERSION"] = "version-to-use"
os.environ["AZURE_OPENAI_API_KEY"] = "your-api-key"
os.environ["AZURE_OPENAI_ENDPOINT"] = "your-api-base-url"
os.environ["OPENAI_API_VERSION"] = "version-to-use"
config = {
"llm": {
"provider": "litellm",
"provider": "azure_openai",
"config": {
"model": "azure_ai/command-r-plus",
"model": "your-deployment-name",
"temperature": 0.1,
"max_tokens": 2000,
}

80
mem0/llms/azure_openai.py Normal file
View File

@@ -0,0 +1,80 @@
import json
from typing import Dict, List, Optional
from openai import AzureOpenAI
from mem0.llms.base import LLMBase
from mem0.configs.llms.base import BaseLlmConfig
class AzureOpenAILLM(LLMBase):
def __init__(self, config: Optional[BaseLlmConfig] = None):
super().__init__(config)
# Model name should match the custom deployment name chosen for it.
if not self.config.model:
self.config.model="gpt-4o"
self.client = AzureOpenAI()
def _parse_response(self, response, tools):
"""
Process the response based on whether tools are used or not.
Args:
response: The raw response from API.
tools: The list of tools provided in the request.
Returns:
str or dict: The processed response.
"""
if tools:
processed_response = {
"content": response.choices[0].message.content,
"tool_calls": []
}
if response.choices[0].message.tool_calls:
for tool_call in response.choices[0].message.tool_calls:
processed_response["tool_calls"].append({
"name": tool_call.function.name,
"arguments": json.loads(tool_call.function.arguments)
})
return processed_response
else:
return response.choices[0].message.content
def generate_response(
self,
messages: List[Dict[str, str]],
response_format=None,
tools: Optional[List[Dict]] = None,
tool_choice: str = "auto",
):
"""
Generate a response based on the given messages using Azure OpenAI.
Args:
messages (list): List of message dicts containing 'role' and 'content'.
response_format (str or object, optional): Format of the response. Defaults to "text".
tools (list, optional): List of tools that the model can call. Defaults to None.
tool_choice (str, optional): Tool choice method. Defaults to "auto".
Returns:
str: The generated response.
"""
params = {
"model": self.config.model,
"messages": messages,
"temperature": self.config.temperature,
"max_tokens": self.config.max_tokens,
"top_p": self.config.top_p
}
if response_format:
params["response_format"] = response_format
if tools:
params["tools"] = tools
params["tool_choice"] = tool_choice
response = self.client.chat.completions.create(**params)
return self._parse_response(response, tools)

View File

@@ -14,7 +14,7 @@ class LlmConfig(BaseModel):
@field_validator("config")
def validate_config(cls, v, values):
provider = values.data.get("provider")
if provider in ("openai", "ollama", "groq", "together", "aws_bedrock", "litellm"):
if provider in ("openai", "ollama", "groq", "together", "aws_bedrock", "litellm", "azure_openai"):
return v
else:
raise ValueError(f"Unsupported LLM provider: {provider}")

View File

@@ -18,6 +18,7 @@ class LlmFactory:
"aws_bedrock": "mem0.llms.aws_bedrock.AWSBedrockLLM",
"litellm": "mem0.llms.litellm.LiteLLM",
"ollama": "mem0.llms.ollama.OllamaLLM",
"azure_openai": "mem0.llms.azure_openai.AzureOpenAILLM",
}
@classmethod

View File

@@ -0,0 +1,94 @@
import pytest
from unittest.mock import Mock, patch
from mem0.llms.azure_openai import AzureOpenAILLM
from mem0.configs.llms.base import BaseLlmConfig
MODEL = "gpt-4o" # or your custom deployment name
TEMPERATURE = 0.7
MAX_TOKENS = 100
TOP_P = 1.0
@pytest.fixture
def mock_openai_client():
with patch('mem0.llms.azure_openai.AzureOpenAI') as mock_openai:
mock_client = Mock()
mock_openai.return_value = mock_client
yield mock_client
def test_generate_response_without_tools(mock_openai_client):
config = BaseLlmConfig(model=MODEL, temperature=TEMPERATURE, max_tokens=MAX_TOKENS, top_p=TOP_P)
llm = AzureOpenAILLM(config)
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Hello, how are you?"}
]
mock_response = Mock()
mock_response.choices = [Mock(message=Mock(content="I'm doing well, thank you for asking!"))]
mock_openai_client.chat.completions.create.return_value = mock_response
response = llm.generate_response(messages)
mock_openai_client.chat.completions.create.assert_called_once_with(
model=MODEL,
messages=messages,
temperature=TEMPERATURE,
max_tokens=MAX_TOKENS,
top_p=TOP_P
)
assert response == "I'm doing well, thank you for asking!"
def test_generate_response_with_tools(mock_openai_client):
config = BaseLlmConfig(model=MODEL, temperature=TEMPERATURE, max_tokens=MAX_TOKENS, top_p=TOP_P)
llm = AzureOpenAILLM(config)
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Add a new memory: Today is a sunny day."}
]
tools = [
{
"type": "function",
"function": {
"name": "add_memory",
"description": "Add a memory",
"parameters": {
"type": "object",
"properties": {
"data": {"type": "string", "description": "Data to add to memory"}
},
"required": ["data"],
},
},
}
]
mock_response = Mock()
mock_message = Mock()
mock_message.content = "I've added the memory for you."
mock_tool_call = Mock()
mock_tool_call.function.name = "add_memory"
mock_tool_call.function.arguments = '{"data": "Today is a sunny day."}'
mock_message.tool_calls = [mock_tool_call]
mock_response.choices = [Mock(message=mock_message)]
mock_openai_client.chat.completions.create.return_value = mock_response
response = llm.generate_response(messages, tools=tools)
mock_openai_client.chat.completions.create.assert_called_once_with(
model=MODEL,
messages=messages,
temperature=TEMPERATURE,
max_tokens=MAX_TOKENS,
top_p=TOP_P,
tools=tools,
tool_choice="auto"
)
assert response["content"] == "I've added the memory for you."
assert len(response["tool_calls"]) == 1
assert response["tool_calls"][0]["name"] == "add_memory"
assert response["tool_calls"][0]["arguments"] == {'data': 'Today is a sunny day.'}