Support Azure OpenAI LLM (#1581)

This commit is contained in:
Mitul Kataria
2024-08-04 00:01:43 +09:00
committed by GitHub
parent 504a87d799
commit 81b4431c9b
5 changed files with 184 additions and 12 deletions

80
mem0/llms/azure_openai.py Normal file
View File

@@ -0,0 +1,80 @@
import json
from typing import Dict, List, Optional
from openai import AzureOpenAI
from mem0.llms.base import LLMBase
from mem0.configs.llms.base import BaseLlmConfig
class AzureOpenAILLM(LLMBase):
def __init__(self, config: Optional[BaseLlmConfig] = None):
super().__init__(config)
# Model name should match the custom deployment name chosen for it.
if not self.config.model:
self.config.model="gpt-4o"
self.client = AzureOpenAI()
def _parse_response(self, response, tools):
"""
Process the response based on whether tools are used or not.
Args:
response: The raw response from API.
tools: The list of tools provided in the request.
Returns:
str or dict: The processed response.
"""
if tools:
processed_response = {
"content": response.choices[0].message.content,
"tool_calls": []
}
if response.choices[0].message.tool_calls:
for tool_call in response.choices[0].message.tool_calls:
processed_response["tool_calls"].append({
"name": tool_call.function.name,
"arguments": json.loads(tool_call.function.arguments)
})
return processed_response
else:
return response.choices[0].message.content
def generate_response(
self,
messages: List[Dict[str, str]],
response_format=None,
tools: Optional[List[Dict]] = None,
tool_choice: str = "auto",
):
"""
Generate a response based on the given messages using Azure OpenAI.
Args:
messages (list): List of message dicts containing 'role' and 'content'.
response_format (str or object, optional): Format of the response. Defaults to "text".
tools (list, optional): List of tools that the model can call. Defaults to None.
tool_choice (str, optional): Tool choice method. Defaults to "auto".
Returns:
str: The generated response.
"""
params = {
"model": self.config.model,
"messages": messages,
"temperature": self.config.temperature,
"max_tokens": self.config.max_tokens,
"top_p": self.config.top_p
}
if response_format:
params["response_format"] = response_format
if tools:
params["tools"] = tools
params["tool_choice"] = tool_choice
response = self.client.chat.completions.create(**params)
return self._parse_response(response, tools)

View File

@@ -14,7 +14,7 @@ class LlmConfig(BaseModel):
@field_validator("config")
def validate_config(cls, v, values):
provider = values.data.get("provider")
if provider in ("openai", "ollama", "groq", "together", "aws_bedrock", "litellm"):
if provider in ("openai", "ollama", "groq", "together", "aws_bedrock", "litellm", "azure_openai"):
return v
else:
raise ValueError(f"Unsupported LLM provider: {provider}")

View File

@@ -18,6 +18,7 @@ class LlmFactory:
"aws_bedrock": "mem0.llms.aws_bedrock.AWSBedrockLLM",
"litellm": "mem0.llms.litellm.LiteLLM",
"ollama": "mem0.llms.ollama.OllamaLLM",
"azure_openai": "mem0.llms.azure_openai.AzureOpenAILLM",
}
@classmethod