Add support for pgvector (#1675)
This commit is contained in:
@@ -54,6 +54,7 @@ class ChromaDB(VectorStoreBase):
|
||||
|
||||
self.client = chromadb.Client(self.settings)
|
||||
|
||||
self.collection_name = collection_name
|
||||
self.collection = self.create_col(collection_name)
|
||||
|
||||
def _parse_output(self, data):
|
||||
@@ -109,12 +110,11 @@ class ChromaDB(VectorStoreBase):
|
||||
)
|
||||
return collection
|
||||
|
||||
def insert(self, name, vectors, payloads=None, ids=None):
|
||||
def insert(self, vectors, payloads=None, ids=None):
|
||||
"""
|
||||
Insert vectors into a collection.
|
||||
|
||||
Args:
|
||||
name (str): Name of the collection.
|
||||
vectors (list): List of vectors to insert.
|
||||
payloads (list, optional): List of payloads corresponding to vectors. Defaults to None.
|
||||
ids (list, optional): List of IDs corresponding to vectors. Defaults to None.
|
||||
@@ -122,12 +122,11 @@ class ChromaDB(VectorStoreBase):
|
||||
|
||||
self.collection.add(ids=ids, embeddings=vectors, metadatas=payloads)
|
||||
|
||||
def search(self, name, query, limit=5, filters=None):
|
||||
def search(self, query, limit=5, filters=None):
|
||||
"""
|
||||
Search for similar vectors.
|
||||
|
||||
Args:
|
||||
name (str): Name of the collection.
|
||||
query (list): Query vector.
|
||||
limit (int, optional): Number of results to return. Defaults to 5.
|
||||
filters (dict, optional): Filters to apply to the search. Defaults to None.
|
||||
@@ -139,23 +138,21 @@ class ChromaDB(VectorStoreBase):
|
||||
final_results = self._parse_output(results)
|
||||
return final_results
|
||||
|
||||
def delete(self, name, vector_id):
|
||||
def delete(self, vector_id):
|
||||
"""
|
||||
Delete a vector by ID.
|
||||
|
||||
Args:
|
||||
name (str): Name of the collection.
|
||||
vector_id (int): ID of the vector to delete.
|
||||
"""
|
||||
|
||||
self.collection.delete(ids=vector_id)
|
||||
|
||||
def update(self, name, vector_id, vector=None, payload=None):
|
||||
def update(self, vector_id, vector=None, payload=None):
|
||||
"""
|
||||
Update a vector and its payload.
|
||||
|
||||
Args:
|
||||
name (str): Name of the collection.
|
||||
vector_id (int): ID of the vector to update.
|
||||
vector (list, optional): Updated vector. Defaults to None.
|
||||
payload (dict, optional): Updated payload. Defaults to None.
|
||||
@@ -163,12 +160,11 @@ class ChromaDB(VectorStoreBase):
|
||||
|
||||
self.collection.update(ids=vector_id, embeddings=vector, metadatas=payload)
|
||||
|
||||
def get(self, name, vector_id):
|
||||
def get(self, vector_id):
|
||||
"""
|
||||
Retrieve a vector by ID.
|
||||
|
||||
Args:
|
||||
name (str): Name of the collection.
|
||||
vector_id (int): ID of the vector to retrieve.
|
||||
|
||||
Returns:
|
||||
@@ -186,33 +182,24 @@ class ChromaDB(VectorStoreBase):
|
||||
"""
|
||||
return self.client.list_collections()
|
||||
|
||||
def delete_col(self, name):
|
||||
"""
|
||||
Delete a collection.
|
||||
def delete_col(self):
|
||||
""" Delete a collection. """
|
||||
self.client.delete_collection(name=self.collection_name)
|
||||
|
||||
Args:
|
||||
name (str): Name of the collection to delete.
|
||||
"""
|
||||
self.client.delete_collection(name=name)
|
||||
|
||||
def col_info(self, name):
|
||||
def col_info(self):
|
||||
"""
|
||||
Get information about a collection.
|
||||
|
||||
Args:
|
||||
name (str): Name of the collection.
|
||||
|
||||
Returns:
|
||||
dict: Collection information.
|
||||
"""
|
||||
return self.client.get_collection(name=name)
|
||||
return self.client.get_collection(name=self.collection_name)
|
||||
|
||||
def list(self, name, filters=None, limit=100):
|
||||
def list(self, filters=None, limit=100):
|
||||
"""
|
||||
List all vectors in a collection.
|
||||
|
||||
Args:
|
||||
name (str): Name of the collection.
|
||||
filters (dict, optional): Filters to apply to the list.
|
||||
limit (int, optional): Number of vectors to return. Defaults to 100.
|
||||
|
||||
|
||||
@@ -13,7 +13,8 @@ class VectorStoreConfig(BaseModel):
|
||||
|
||||
_provider_configs: Dict[str, str] = {
|
||||
"qdrant": "QdrantConfig",
|
||||
"chroma": "ChromaDbConfig"
|
||||
"chroma": "ChromaDbConfig",
|
||||
"pgvector": "PGVectorConfig"
|
||||
}
|
||||
|
||||
@model_validator(mode="after")
|
||||
|
||||
241
mem0/vector_stores/pgvector.py
Normal file
241
mem0/vector_stores/pgvector.py
Normal file
@@ -0,0 +1,241 @@
|
||||
import json
|
||||
from typing import Optional, List, Dict, Any
|
||||
from pydantic import BaseModel
|
||||
|
||||
try:
|
||||
import psycopg2
|
||||
from psycopg2.extras import execute_values
|
||||
except ImportError:
|
||||
raise ImportError("PGVector requires extra dependencies. Install with `pip install psycopg2`") from None
|
||||
|
||||
|
||||
from mem0.vector_stores.base import VectorStoreBase
|
||||
|
||||
class OutputData(BaseModel):
|
||||
id: Optional[str]
|
||||
score: Optional[float]
|
||||
payload: Optional[dict]
|
||||
|
||||
|
||||
class PGVector(VectorStoreBase):
|
||||
def __init__(
|
||||
self,
|
||||
dbname,
|
||||
collection_name,
|
||||
embedding_model_dims,
|
||||
user,
|
||||
password,
|
||||
host,
|
||||
port
|
||||
):
|
||||
"""
|
||||
Initialize the PGVector database.
|
||||
|
||||
Args:
|
||||
dbname (str): Database name
|
||||
collection_name (str): Collection name
|
||||
embedding_model_dims (int): Dimension of the embedding vector
|
||||
user (str): Database user
|
||||
password (str): Database password
|
||||
host (str, optional): Database host
|
||||
port (int, optional): Database port
|
||||
"""
|
||||
self.collection_name = collection_name
|
||||
|
||||
self.conn = psycopg2.connect(
|
||||
dbname=dbname,
|
||||
user=user,
|
||||
password=password,
|
||||
host=host,
|
||||
port=port
|
||||
)
|
||||
self.cur = self.conn.cursor()
|
||||
|
||||
collections = self.list_cols()
|
||||
if collection_name not in collections:
|
||||
self.create_col(embedding_model_dims)
|
||||
|
||||
def create_col(self, embedding_model_dims):
|
||||
"""
|
||||
Create a new collection (table in PostgreSQL).
|
||||
|
||||
Args:
|
||||
name (str): Name of the collection.
|
||||
embedding_model_dims (int, optional): Dimension of the embedding vector.
|
||||
"""
|
||||
self.cur.execute(f"""
|
||||
CREATE TABLE IF NOT EXISTS {self.collection_name} (
|
||||
id UUID PRIMARY KEY,
|
||||
vector vector({embedding_model_dims}),
|
||||
payload JSONB
|
||||
);
|
||||
""")
|
||||
self.conn.commit()
|
||||
|
||||
def insert(self, vectors, payloads = None, ids = None):
|
||||
"""
|
||||
Insert vectors into a collection.
|
||||
|
||||
Args:
|
||||
vectors (List[List[float]]): List of vectors to insert.
|
||||
payloads (List[Dict], optional): List of payloads corresponding to vectors.
|
||||
ids (List[str], optional): List of IDs corresponding to vectors.
|
||||
"""
|
||||
json_payloads = [json.dumps(payload) for payload in payloads]
|
||||
|
||||
data = [(id, vector, payload) for id, vector, payload in zip(ids, vectors, json_payloads)]
|
||||
execute_values(self.cur, f"INSERT INTO {self.collection_name} (id, vector, payload) VALUES %s", data)
|
||||
self.conn.commit()
|
||||
|
||||
def search(self, query, limit = 5, filters = None):
|
||||
"""
|
||||
Search for similar vectors.
|
||||
|
||||
Args:
|
||||
query (List[float]): Query vector.
|
||||
limit (int, optional): Number of results to return. Defaults to 5.
|
||||
filters (Dict, optional): Filters to apply to the search. Defaults to None.
|
||||
|
||||
Returns:
|
||||
list: Search results.
|
||||
"""
|
||||
filter_conditions = []
|
||||
filter_params = []
|
||||
|
||||
if filters:
|
||||
for k, v in filters.items():
|
||||
filter_conditions.append(f"payload->>%s = %s")
|
||||
filter_params.extend([k, str(v)])
|
||||
|
||||
filter_clause = "WHERE " + " AND ".join(filter_conditions) if filter_conditions else ""
|
||||
|
||||
self.cur.execute(f"""
|
||||
SELECT id, vector <-> %s::vector AS distance, payload
|
||||
FROM {self.collection_name}
|
||||
{filter_clause}
|
||||
ORDER BY distance
|
||||
LIMIT %s
|
||||
""", (query, *filter_params, limit))
|
||||
|
||||
results = self.cur.fetchall()
|
||||
return [OutputData(id=str(r[0]), score=float(r[1]), payload=r[2]) for r in results]
|
||||
|
||||
def delete(self, vector_id):
|
||||
"""
|
||||
Delete a vector by ID.
|
||||
|
||||
Args:
|
||||
vector_id (str): ID of the vector to delete.
|
||||
"""
|
||||
self.cur.execute(f"DELETE FROM {self.collection_name} WHERE id = %s", (vector_id,))
|
||||
self.conn.commit()
|
||||
|
||||
def update(self, vector_id, vector = None, payload = None):
|
||||
"""
|
||||
Update a vector and its payload.
|
||||
|
||||
Args:
|
||||
vector_id (str): ID of the vector to update.
|
||||
vector (List[float], optional): Updated vector.
|
||||
payload (Dict, optional): Updated payload.
|
||||
"""
|
||||
if vector:
|
||||
self.cur.execute(f"UPDATE {self.collection_name} SET vector = %s WHERE id = %s", (vector, vector_id))
|
||||
if payload:
|
||||
self.cur.execute(f"UPDATE {self.collection_name} SET payload = %s WHERE id = %s", (psycopg2.extras.Json(payload), vector_id))
|
||||
self.conn.commit()
|
||||
|
||||
def get(self, vector_id) -> OutputData:
|
||||
"""
|
||||
Retrieve a vector by ID.
|
||||
|
||||
Args:
|
||||
vector_id (str): ID of the vector to retrieve.
|
||||
|
||||
Returns:
|
||||
OutputData: Retrieved vector.
|
||||
"""
|
||||
self.cur.execute(f"SELECT id, vector, payload FROM {self.collection_name} WHERE id = %s", (vector_id,))
|
||||
result = self.cur.fetchone()
|
||||
if not result:
|
||||
return None
|
||||
return OutputData(id=str(result[0]), score=None, payload=result[2])
|
||||
|
||||
def list_cols(self) -> List[str]:
|
||||
"""
|
||||
List all collections.
|
||||
|
||||
Returns:
|
||||
List[str]: List of collection names.
|
||||
"""
|
||||
self.cur.execute("SELECT table_name FROM information_schema.tables WHERE table_schema = 'public'")
|
||||
return [row[0] for row in self.cur.fetchall()]
|
||||
|
||||
def delete_col(self):
|
||||
""" Delete a collection. """
|
||||
self.cur.execute(f"DROP TABLE IF EXISTS {self.collection_name}")
|
||||
self.conn.commit()
|
||||
|
||||
def col_info(self):
|
||||
"""
|
||||
Get information about a collection.
|
||||
|
||||
Returns:
|
||||
Dict[str, Any]: Collection information.
|
||||
"""
|
||||
self.cur.execute(f"""
|
||||
SELECT
|
||||
table_name,
|
||||
(SELECT COUNT(*) FROM {self.collection_name}) as row_count,
|
||||
(SELECT pg_size_pretty(pg_total_relation_size('{self.collection_name}'))) as total_size
|
||||
FROM information_schema.tables
|
||||
WHERE table_schema = 'public' AND table_name = %s
|
||||
""", (self.collection_name,))
|
||||
result = self.cur.fetchone()
|
||||
return {
|
||||
"name": result[0],
|
||||
"count": result[1],
|
||||
"size": result[2]
|
||||
}
|
||||
|
||||
def list(self, filters = None, limit = 100):
|
||||
"""
|
||||
List all vectors in a collection.
|
||||
|
||||
Args:
|
||||
filters (Dict, optional): Filters to apply to the list.
|
||||
limit (int, optional): Number of vectors to return. Defaults to 100.
|
||||
|
||||
Returns:
|
||||
List[OutputData]: List of vectors.
|
||||
"""
|
||||
filter_conditions = []
|
||||
filter_params = []
|
||||
|
||||
if filters:
|
||||
for k, v in filters.items():
|
||||
filter_conditions.append(f"payload->>%s = %s")
|
||||
filter_params.extend([k, str(v)])
|
||||
|
||||
filter_clause = "WHERE " + " AND ".join(filter_conditions) if filter_conditions else ""
|
||||
|
||||
query = f"""
|
||||
SELECT id, vector, payload
|
||||
FROM {self.collection_name}
|
||||
{filter_clause}
|
||||
LIMIT %s
|
||||
"""
|
||||
|
||||
self.cur.execute(query, (*filter_params, limit))
|
||||
|
||||
results = self.cur.fetchall()
|
||||
return [[OutputData(id=str(r[0]), score=None, payload=r[2]) for r in results]]
|
||||
|
||||
def __del__(self):
|
||||
"""
|
||||
Close the database connection when the object is deleted.
|
||||
"""
|
||||
if hasattr(self, 'cur'):
|
||||
self.cur.close()
|
||||
if hasattr(self, 'conn'):
|
||||
self.conn.close()
|
||||
@@ -61,9 +61,10 @@ class Qdrant(VectorStoreBase):
|
||||
|
||||
self.client = QdrantClient(**params)
|
||||
|
||||
self.create_col(collection_name, embedding_model_dims, on_disk)
|
||||
self.collection_name = collection_name
|
||||
self.create_col(embedding_model_dims, on_disk)
|
||||
|
||||
def create_col(self, name, vector_size, on_disk, distance=Distance.COSINE):
|
||||
def create_col(self, vector_size, on_disk, distance=Distance.COSINE):
|
||||
"""
|
||||
Create a new collection.
|
||||
|
||||
@@ -75,21 +76,20 @@ class Qdrant(VectorStoreBase):
|
||||
# Skip creating collection if already exists
|
||||
response = self.list_cols()
|
||||
for collection in response.collections:
|
||||
if collection.name == name:
|
||||
logging.debug(f"Collection {name} already exists. Skipping creation.")
|
||||
if collection.name == self.collection_name:
|
||||
logging.debug(f"Collection {self.collection_name} already exists. Skipping creation.")
|
||||
return
|
||||
|
||||
self.client.create_collection(
|
||||
collection_name=name,
|
||||
collection_name=self.collection_name,
|
||||
vectors_config=VectorParams(size=vector_size, distance=distance, on_disk=on_disk),
|
||||
)
|
||||
|
||||
def insert(self, name, vectors, payloads=None, ids=None):
|
||||
def insert(self, vectors, payloads=None, ids=None):
|
||||
"""
|
||||
Insert vectors into a collection.
|
||||
|
||||
Args:
|
||||
name (str): Name of the collection.
|
||||
vectors (list): List of vectors to insert.
|
||||
payloads (list, optional): List of payloads corresponding to vectors. Defaults to None.
|
||||
ids (list, optional): List of IDs corresponding to vectors. Defaults to None.
|
||||
@@ -102,7 +102,7 @@ class Qdrant(VectorStoreBase):
|
||||
)
|
||||
for idx, vector in enumerate(vectors)
|
||||
]
|
||||
self.client.upsert(collection_name=name, points=points)
|
||||
self.client.upsert(collection_name=self.collection_name, points=points)
|
||||
|
||||
def _create_filter(self, filters):
|
||||
"""
|
||||
@@ -128,12 +128,11 @@ class Qdrant(VectorStoreBase):
|
||||
)
|
||||
return Filter(must=conditions) if conditions else None
|
||||
|
||||
def search(self, name, query, limit=5, filters=None):
|
||||
def search(self, query, limit=5, filters=None):
|
||||
"""
|
||||
Search for similar vectors.
|
||||
|
||||
Args:
|
||||
name (str): Name of the collection.
|
||||
query (list): Query vector.
|
||||
limit (int, optional): Number of results to return. Defaults to 5.
|
||||
filters (dict, optional): Filters to apply to the search. Defaults to None.
|
||||
@@ -143,54 +142,51 @@ class Qdrant(VectorStoreBase):
|
||||
"""
|
||||
query_filter = self._create_filter(filters) if filters else None
|
||||
hits = self.client.search(
|
||||
collection_name=name,
|
||||
collection_name=self.collection_name,
|
||||
query_vector=query,
|
||||
query_filter=query_filter,
|
||||
limit=limit,
|
||||
)
|
||||
return hits
|
||||
|
||||
def delete(self, name, vector_id):
|
||||
def delete(self, vector_id):
|
||||
"""
|
||||
Delete a vector by ID.
|
||||
|
||||
Args:
|
||||
name (str): Name of the collection.
|
||||
vector_id (int): ID of the vector to delete.
|
||||
"""
|
||||
self.client.delete(
|
||||
collection_name=name,
|
||||
collection_name=self.collection_name,
|
||||
points_selector=PointIdsList(
|
||||
points=[vector_id],
|
||||
),
|
||||
)
|
||||
|
||||
def update(self, name, vector_id, vector=None, payload=None):
|
||||
def update(self, vector_id, vector=None, payload=None):
|
||||
"""
|
||||
Update a vector and its payload.
|
||||
|
||||
Args:
|
||||
name (str): Name of the collection.
|
||||
vector_id (int): ID of the vector to update.
|
||||
vector (list, optional): Updated vector. Defaults to None.
|
||||
payload (dict, optional): Updated payload. Defaults to None.
|
||||
"""
|
||||
point = PointStruct(id=vector_id, vector=vector, payload=payload)
|
||||
self.client.upsert(collection_name=name, points=[point])
|
||||
self.client.upsert(collection_name=self.collection_name, points=[point])
|
||||
|
||||
def get(self, name, vector_id):
|
||||
def get(self, vector_id):
|
||||
"""
|
||||
Retrieve a vector by ID.
|
||||
|
||||
Args:
|
||||
name (str): Name of the collection.
|
||||
vector_id (int): ID of the vector to retrieve.
|
||||
|
||||
Returns:
|
||||
dict: Retrieved vector.
|
||||
"""
|
||||
result = self.client.retrieve(
|
||||
collection_name=name, ids=[vector_id], with_payload=True
|
||||
collection_name=self.collection_name, ids=[vector_id], with_payload=True
|
||||
)
|
||||
return result[0] if result else None
|
||||
|
||||
@@ -203,33 +199,24 @@ class Qdrant(VectorStoreBase):
|
||||
"""
|
||||
return self.client.get_collections()
|
||||
|
||||
def delete_col(self, name):
|
||||
"""
|
||||
Delete a collection.
|
||||
def delete_col(self):
|
||||
""" Delete a collection. """
|
||||
self.client.delete_collection(collection_name=self.collection_name)
|
||||
|
||||
Args:
|
||||
name (str): Name of the collection to delete.
|
||||
"""
|
||||
self.client.delete_collection(collection_name=name)
|
||||
|
||||
def col_info(self, name):
|
||||
def col_info(self):
|
||||
"""
|
||||
Get information about a collection.
|
||||
|
||||
Args:
|
||||
name (str): Name of the collection.
|
||||
|
||||
Returns:
|
||||
dict: Collection information.
|
||||
"""
|
||||
return self.client.get_collection(collection_name=name)
|
||||
return self.client.get_collection(collection_name=self.collection_name)
|
||||
|
||||
def list(self, name, filters=None, limit=100):
|
||||
def list(self, filters=None, limit=100):
|
||||
"""
|
||||
List all vectors in a collection.
|
||||
|
||||
Args:
|
||||
name (str): Name of the collection.
|
||||
limit (int, optional): Number of vectors to return. Defaults to 100.
|
||||
|
||||
Returns:
|
||||
@@ -237,7 +224,7 @@ class Qdrant(VectorStoreBase):
|
||||
"""
|
||||
query_filter = self._create_filter(filters) if filters else None
|
||||
result = self.client.scroll(
|
||||
collection_name=name,
|
||||
collection_name=self.collection_name,
|
||||
scroll_filter=query_filter,
|
||||
limit=limit,
|
||||
with_payload=True,
|
||||
|
||||
Reference in New Issue
Block a user