241 lines
7.5 KiB
Python
241 lines
7.5 KiB
Python
import json
|
|
from typing import Optional, List, Dict, Any
|
|
from pydantic import BaseModel
|
|
|
|
try:
|
|
import psycopg2
|
|
from psycopg2.extras import execute_values
|
|
except ImportError:
|
|
raise ImportError("PGVector requires extra dependencies. Install with `pip install psycopg2`") from None
|
|
|
|
|
|
from mem0.vector_stores.base import VectorStoreBase
|
|
|
|
class OutputData(BaseModel):
|
|
id: Optional[str]
|
|
score: Optional[float]
|
|
payload: Optional[dict]
|
|
|
|
|
|
class PGVector(VectorStoreBase):
|
|
def __init__(
|
|
self,
|
|
dbname,
|
|
collection_name,
|
|
embedding_model_dims,
|
|
user,
|
|
password,
|
|
host,
|
|
port
|
|
):
|
|
"""
|
|
Initialize the PGVector database.
|
|
|
|
Args:
|
|
dbname (str): Database name
|
|
collection_name (str): Collection name
|
|
embedding_model_dims (int): Dimension of the embedding vector
|
|
user (str): Database user
|
|
password (str): Database password
|
|
host (str, optional): Database host
|
|
port (int, optional): Database port
|
|
"""
|
|
self.collection_name = collection_name
|
|
|
|
self.conn = psycopg2.connect(
|
|
dbname=dbname,
|
|
user=user,
|
|
password=password,
|
|
host=host,
|
|
port=port
|
|
)
|
|
self.cur = self.conn.cursor()
|
|
|
|
collections = self.list_cols()
|
|
if collection_name not in collections:
|
|
self.create_col(embedding_model_dims)
|
|
|
|
def create_col(self, embedding_model_dims):
|
|
"""
|
|
Create a new collection (table in PostgreSQL).
|
|
|
|
Args:
|
|
name (str): Name of the collection.
|
|
embedding_model_dims (int, optional): Dimension of the embedding vector.
|
|
"""
|
|
self.cur.execute(f"""
|
|
CREATE TABLE IF NOT EXISTS {self.collection_name} (
|
|
id UUID PRIMARY KEY,
|
|
vector vector({embedding_model_dims}),
|
|
payload JSONB
|
|
);
|
|
""")
|
|
self.conn.commit()
|
|
|
|
def insert(self, vectors, payloads = None, ids = None):
|
|
"""
|
|
Insert vectors into a collection.
|
|
|
|
Args:
|
|
vectors (List[List[float]]): List of vectors to insert.
|
|
payloads (List[Dict], optional): List of payloads corresponding to vectors.
|
|
ids (List[str], optional): List of IDs corresponding to vectors.
|
|
"""
|
|
json_payloads = [json.dumps(payload) for payload in payloads]
|
|
|
|
data = [(id, vector, payload) for id, vector, payload in zip(ids, vectors, json_payloads)]
|
|
execute_values(self.cur, f"INSERT INTO {self.collection_name} (id, vector, payload) VALUES %s", data)
|
|
self.conn.commit()
|
|
|
|
def search(self, query, limit = 5, filters = None):
|
|
"""
|
|
Search for similar vectors.
|
|
|
|
Args:
|
|
query (List[float]): Query vector.
|
|
limit (int, optional): Number of results to return. Defaults to 5.
|
|
filters (Dict, optional): Filters to apply to the search. Defaults to None.
|
|
|
|
Returns:
|
|
list: Search results.
|
|
"""
|
|
filter_conditions = []
|
|
filter_params = []
|
|
|
|
if filters:
|
|
for k, v in filters.items():
|
|
filter_conditions.append(f"payload->>%s = %s")
|
|
filter_params.extend([k, str(v)])
|
|
|
|
filter_clause = "WHERE " + " AND ".join(filter_conditions) if filter_conditions else ""
|
|
|
|
self.cur.execute(f"""
|
|
SELECT id, vector <-> %s::vector AS distance, payload
|
|
FROM {self.collection_name}
|
|
{filter_clause}
|
|
ORDER BY distance
|
|
LIMIT %s
|
|
""", (query, *filter_params, limit))
|
|
|
|
results = self.cur.fetchall()
|
|
return [OutputData(id=str(r[0]), score=float(r[1]), payload=r[2]) for r in results]
|
|
|
|
def delete(self, vector_id):
|
|
"""
|
|
Delete a vector by ID.
|
|
|
|
Args:
|
|
vector_id (str): ID of the vector to delete.
|
|
"""
|
|
self.cur.execute(f"DELETE FROM {self.collection_name} WHERE id = %s", (vector_id,))
|
|
self.conn.commit()
|
|
|
|
def update(self, vector_id, vector = None, payload = None):
|
|
"""
|
|
Update a vector and its payload.
|
|
|
|
Args:
|
|
vector_id (str): ID of the vector to update.
|
|
vector (List[float], optional): Updated vector.
|
|
payload (Dict, optional): Updated payload.
|
|
"""
|
|
if vector:
|
|
self.cur.execute(f"UPDATE {self.collection_name} SET vector = %s WHERE id = %s", (vector, vector_id))
|
|
if payload:
|
|
self.cur.execute(f"UPDATE {self.collection_name} SET payload = %s WHERE id = %s", (psycopg2.extras.Json(payload), vector_id))
|
|
self.conn.commit()
|
|
|
|
def get(self, vector_id) -> OutputData:
|
|
"""
|
|
Retrieve a vector by ID.
|
|
|
|
Args:
|
|
vector_id (str): ID of the vector to retrieve.
|
|
|
|
Returns:
|
|
OutputData: Retrieved vector.
|
|
"""
|
|
self.cur.execute(f"SELECT id, vector, payload FROM {self.collection_name} WHERE id = %s", (vector_id,))
|
|
result = self.cur.fetchone()
|
|
if not result:
|
|
return None
|
|
return OutputData(id=str(result[0]), score=None, payload=result[2])
|
|
|
|
def list_cols(self) -> List[str]:
|
|
"""
|
|
List all collections.
|
|
|
|
Returns:
|
|
List[str]: List of collection names.
|
|
"""
|
|
self.cur.execute("SELECT table_name FROM information_schema.tables WHERE table_schema = 'public'")
|
|
return [row[0] for row in self.cur.fetchall()]
|
|
|
|
def delete_col(self):
|
|
""" Delete a collection. """
|
|
self.cur.execute(f"DROP TABLE IF EXISTS {self.collection_name}")
|
|
self.conn.commit()
|
|
|
|
def col_info(self):
|
|
"""
|
|
Get information about a collection.
|
|
|
|
Returns:
|
|
Dict[str, Any]: Collection information.
|
|
"""
|
|
self.cur.execute(f"""
|
|
SELECT
|
|
table_name,
|
|
(SELECT COUNT(*) FROM {self.collection_name}) as row_count,
|
|
(SELECT pg_size_pretty(pg_total_relation_size('{self.collection_name}'))) as total_size
|
|
FROM information_schema.tables
|
|
WHERE table_schema = 'public' AND table_name = %s
|
|
""", (self.collection_name,))
|
|
result = self.cur.fetchone()
|
|
return {
|
|
"name": result[0],
|
|
"count": result[1],
|
|
"size": result[2]
|
|
}
|
|
|
|
def list(self, filters = None, limit = 100):
|
|
"""
|
|
List all vectors in a collection.
|
|
|
|
Args:
|
|
filters (Dict, optional): Filters to apply to the list.
|
|
limit (int, optional): Number of vectors to return. Defaults to 100.
|
|
|
|
Returns:
|
|
List[OutputData]: List of vectors.
|
|
"""
|
|
filter_conditions = []
|
|
filter_params = []
|
|
|
|
if filters:
|
|
for k, v in filters.items():
|
|
filter_conditions.append(f"payload->>%s = %s")
|
|
filter_params.extend([k, str(v)])
|
|
|
|
filter_clause = "WHERE " + " AND ".join(filter_conditions) if filter_conditions else ""
|
|
|
|
query = f"""
|
|
SELECT id, vector, payload
|
|
FROM {self.collection_name}
|
|
{filter_clause}
|
|
LIMIT %s
|
|
"""
|
|
|
|
self.cur.execute(query, (*filter_params, limit))
|
|
|
|
results = self.cur.fetchall()
|
|
return [[OutputData(id=str(r[0]), score=None, payload=r[2]) for r in results]]
|
|
|
|
def __del__(self):
|
|
"""
|
|
Close the database connection when the object is deleted.
|
|
"""
|
|
if hasattr(self, 'cur'):
|
|
self.cur.close()
|
|
if hasattr(self, 'conn'):
|
|
self.conn.close() |