Add config option for vertex embedding tasks (#2266)
This commit is contained in:
@@ -1,5 +1,7 @@
|
||||
import pytest
|
||||
from unittest.mock import Mock, patch
|
||||
|
||||
import pytest
|
||||
|
||||
from mem0.embeddings.vertexai import VertexAIEmbedding
|
||||
|
||||
|
||||
@@ -20,13 +22,23 @@ def mock_os_environ():
|
||||
@pytest.fixture
|
||||
def mock_config():
|
||||
with patch("mem0.configs.embeddings.base.BaseEmbedderConfig") as mock_config:
|
||||
mock_config.vertex_credentials_json = None
|
||||
mock_config.return_value.vertex_credentials_json = "/path/to/credentials.json"
|
||||
yield mock_config
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def mock_embedding_types():
|
||||
return ["SEMANTIC_SIMILARITY", "CLASSIFICATION", "CLUSTERING", "RETRIEVAL_DOCUMENT", "RETRIEVAL_QUERY", "QUESTION_ANSWERING", "FACT_VERIFICATION", "CODE_RETRIEVAL_QUERY"]
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def mock_text_embedding_input():
|
||||
with patch("mem0.embeddings.vertexai.TextEmbeddingInput") as mock_input:
|
||||
yield mock_input
|
||||
|
||||
|
||||
@patch("mem0.embeddings.vertexai.TextEmbeddingModel")
|
||||
def test_embed_default_model(mock_text_embedding_model, mock_os_environ, mock_config):
|
||||
mock_config.vertex_credentials_json = "/path/to/credentials.json"
|
||||
def test_embed_default_model(mock_text_embedding_model, mock_os_environ, mock_config, mock_text_embedding_input):
|
||||
mock_config.return_value.model = "text-embedding-004"
|
||||
mock_config.return_value.embedding_dims = 256
|
||||
|
||||
@@ -37,16 +49,16 @@ def test_embed_default_model(mock_text_embedding_model, mock_os_environ, mock_co
|
||||
mock_text_embedding_model.from_pretrained.return_value.get_embeddings.return_value = [mock_embedding]
|
||||
|
||||
embedder.embed("Hello world")
|
||||
|
||||
mock_text_embedding_input.assert_called_once_with(text="Hello world", task_type="SEMANTIC_SIMILARITY")
|
||||
mock_text_embedding_model.from_pretrained.assert_called_once_with("text-embedding-004")
|
||||
|
||||
mock_text_embedding_model.from_pretrained.return_value.get_embeddings.assert_called_once_with(
|
||||
texts=["Hello world"], output_dimensionality=256
|
||||
texts=[mock_text_embedding_input("Hello world")], output_dimensionality=256
|
||||
)
|
||||
|
||||
|
||||
@patch("mem0.embeddings.vertexai.TextEmbeddingModel")
|
||||
def test_embed_custom_model(mock_text_embedding_model, mock_os_environ, mock_config):
|
||||
mock_config.vertex_credentials_json = "/path/to/credentials.json"
|
||||
def test_embed_custom_model(mock_text_embedding_model, mock_os_environ, mock_config, mock_text_embedding_input):
|
||||
mock_config.return_value.model = "custom-embedding-model"
|
||||
mock_config.return_value.embedding_dims = 512
|
||||
|
||||
@@ -58,18 +70,42 @@ def test_embed_custom_model(mock_text_embedding_model, mock_os_environ, mock_con
|
||||
mock_text_embedding_model.from_pretrained.return_value.get_embeddings.return_value = [mock_embedding]
|
||||
|
||||
result = embedder.embed("Test embedding")
|
||||
|
||||
mock_text_embedding_input.assert_called_once_with(text="Test embedding", task_type="SEMANTIC_SIMILARITY")
|
||||
mock_text_embedding_model.from_pretrained.assert_called_with("custom-embedding-model")
|
||||
mock_text_embedding_model.from_pretrained.return_value.get_embeddings.assert_called_once_with(
|
||||
texts=["Test embedding"], output_dimensionality=512
|
||||
texts=[mock_text_embedding_input("Test embedding")], output_dimensionality=512
|
||||
)
|
||||
|
||||
assert result == [0.4, 0.5, 0.6]
|
||||
|
||||
|
||||
@patch("mem0.embeddings.vertexai.TextEmbeddingModel")
|
||||
def test_embed_with_memory_action(mock_text_embedding_model, mock_os_environ, mock_config, mock_embedding_types, mock_text_embedding_input):
|
||||
mock_config.return_value.model = "text-embedding-004"
|
||||
mock_config.return_value.embedding_dims = 256
|
||||
|
||||
for embedding_type in mock_embedding_types:
|
||||
|
||||
mock_config.return_value.memory_add_embedding_type = embedding_type
|
||||
mock_config.return_value.memory_update_embedding_type = embedding_type
|
||||
mock_config.return_value.memory_search_embedding_type = embedding_type
|
||||
|
||||
config = mock_config()
|
||||
embedder = VertexAIEmbedding(config)
|
||||
|
||||
mock_text_embedding_model.from_pretrained.assert_called_with("text-embedding-004")
|
||||
|
||||
for memory_action in ["add", "update", "search"]:
|
||||
embedder.embed("Hello world", memory_action=memory_action)
|
||||
|
||||
mock_text_embedding_input.assert_called_with(text="Hello world", task_type=embedding_type)
|
||||
mock_text_embedding_model.from_pretrained.return_value.get_embeddings.assert_called_with(
|
||||
texts=[mock_text_embedding_input("Hello world", embedding_type)], output_dimensionality=256
|
||||
)
|
||||
|
||||
|
||||
@patch("mem0.embeddings.vertexai.os")
|
||||
def test_credentials_from_environment(mock_os, mock_text_embedding_model, mock_config):
|
||||
mock_os.getenv.return_value = "/path/to/env/credentials.json"
|
||||
mock_config.vertex_credentials_json = None
|
||||
config = mock_config()
|
||||
VertexAIEmbedding(config)
|
||||
@@ -90,7 +126,6 @@ def test_missing_credentials(mock_os, mock_text_embedding_model, mock_config):
|
||||
|
||||
@patch("mem0.embeddings.vertexai.TextEmbeddingModel")
|
||||
def test_embed_with_different_dimensions(mock_text_embedding_model, mock_os_environ, mock_config):
|
||||
mock_config.vertex_credentials_json = "/path/to/credentials.json"
|
||||
mock_config.return_value.embedding_dims = 1024
|
||||
|
||||
config = mock_config()
|
||||
@@ -102,3 +137,15 @@ def test_embed_with_different_dimensions(mock_text_embedding_model, mock_os_envi
|
||||
result = embedder.embed("Large embedding test")
|
||||
|
||||
assert result == [0.1] * 1024
|
||||
|
||||
|
||||
@patch("mem0.embeddings.vertexai.TextEmbeddingModel")
|
||||
def test_invalid_memory_action(mock_text_embedding_model, mock_config):
|
||||
mock_config.return_value.model = "text-embedding-004"
|
||||
mock_config.return_value.embedding_dims = 256
|
||||
|
||||
config = mock_config()
|
||||
embedder = VertexAIEmbedding(config)
|
||||
|
||||
with pytest.raises(ValueError):
|
||||
embedder.embed("Hello world", memory_action="invalid_action")
|
||||
@@ -119,7 +119,7 @@ def test_search(memory_instance, version, enable_graph):
|
||||
memory_instance.vector_store.search.assert_called_once_with(
|
||||
query=[0.1, 0.2, 0.3], limit=100, filters={"user_id": "test_user"}
|
||||
)
|
||||
memory_instance.embedding_model.embed.assert_called_once_with("test query")
|
||||
memory_instance.embedding_model.embed.assert_called_once_with("test query", "search")
|
||||
|
||||
if enable_graph:
|
||||
memory_instance.graph.search.assert_called_once_with("test query", {"user_id": "test_user"}, 100)
|
||||
|
||||
Reference in New Issue
Block a user