Add config option for vertex embedding tasks (#2266)

This commit is contained in:
Wonbin Kim
2025-02-28 18:50:05 +09:00
committed by GitHub
parent 8143f86be6
commit 6acb00731d
14 changed files with 141 additions and 48 deletions

View File

@@ -1,7 +1,7 @@
import os
from typing import Optional
from typing import Literal, Optional
from vertexai.language_models import TextEmbeddingModel
from vertexai.language_models import TextEmbeddingInput, TextEmbeddingModel
from mem0.configs.embeddings.base import BaseEmbedderConfig
from mem0.embeddings.base import EmbeddingBase
@@ -13,7 +13,13 @@ class VertexAIEmbedding(EmbeddingBase):
self.config.model = self.config.model or "text-embedding-004"
self.config.embedding_dims = self.config.embedding_dims or 256
self.embedding_types = {
"add": self.config.memory_add_embedding_type or "RETRIEVAL_DOCUMENT",
"update": self.config.memory_update_embedding_type or "RETRIEVAL_DOCUMENT",
"search": self.config.memory_search_embedding_type or "RETRIEVAL_QUERY"
}
credentials_path = self.config.vertex_credentials_json
if credentials_path:
@@ -25,16 +31,24 @@ class VertexAIEmbedding(EmbeddingBase):
self.model = TextEmbeddingModel.from_pretrained(self.config.model)
def embed(self, text):
def embed(self, text, memory_action:Optional[Literal["add", "search", "update"]] = None):
"""
Get the embedding for the given text using Vertex AI.
Args:
text (str): The text to embed.
memory_action (optional): The type of embedding to use. Must be one of "add", "search", or "update". Defaults to None.
Returns:
list: The embedding vector.
"""
embeddings = self.model.get_embeddings(texts=[text], output_dimensionality=self.config.embedding_dims)
embedding_type = "SEMANTIC_SIMILARITY"
if memory_action is not None:
if memory_action not in self.embedding_types:
raise ValueError(f"Invalid memory action: {memory_action}")
embedding_type = self.embedding_types[memory_action]
text_input = TextEmbeddingInput(text=text, task_type=embedding_type)
embeddings = self.model.get_embeddings(texts=[text_input], output_dimensionality=self.config.embedding_dims)
return embeddings[0].values