Add config option for vertex embedding tasks (#2266)
This commit is contained in:
@@ -1,7 +1,7 @@
|
||||
import os
|
||||
from typing import Optional
|
||||
from typing import Literal, Optional
|
||||
|
||||
from vertexai.language_models import TextEmbeddingModel
|
||||
from vertexai.language_models import TextEmbeddingInput, TextEmbeddingModel
|
||||
|
||||
from mem0.configs.embeddings.base import BaseEmbedderConfig
|
||||
from mem0.embeddings.base import EmbeddingBase
|
||||
@@ -13,7 +13,13 @@ class VertexAIEmbedding(EmbeddingBase):
|
||||
|
||||
self.config.model = self.config.model or "text-embedding-004"
|
||||
self.config.embedding_dims = self.config.embedding_dims or 256
|
||||
|
||||
|
||||
self.embedding_types = {
|
||||
"add": self.config.memory_add_embedding_type or "RETRIEVAL_DOCUMENT",
|
||||
"update": self.config.memory_update_embedding_type or "RETRIEVAL_DOCUMENT",
|
||||
"search": self.config.memory_search_embedding_type or "RETRIEVAL_QUERY"
|
||||
}
|
||||
|
||||
credentials_path = self.config.vertex_credentials_json
|
||||
|
||||
if credentials_path:
|
||||
@@ -25,16 +31,24 @@ class VertexAIEmbedding(EmbeddingBase):
|
||||
|
||||
self.model = TextEmbeddingModel.from_pretrained(self.config.model)
|
||||
|
||||
def embed(self, text):
|
||||
def embed(self, text, memory_action:Optional[Literal["add", "search", "update"]] = None):
|
||||
"""
|
||||
Get the embedding for the given text using Vertex AI.
|
||||
|
||||
Args:
|
||||
text (str): The text to embed.
|
||||
|
||||
memory_action (optional): The type of embedding to use. Must be one of "add", "search", or "update". Defaults to None.
|
||||
Returns:
|
||||
list: The embedding vector.
|
||||
"""
|
||||
embeddings = self.model.get_embeddings(texts=[text], output_dimensionality=self.config.embedding_dims)
|
||||
embedding_type = "SEMANTIC_SIMILARITY"
|
||||
if memory_action is not None:
|
||||
if memory_action not in self.embedding_types:
|
||||
raise ValueError(f"Invalid memory action: {memory_action}")
|
||||
|
||||
embedding_type = self.embedding_types[memory_action]
|
||||
|
||||
text_input = TextEmbeddingInput(text=text, task_type=embedding_type)
|
||||
embeddings = self.model.get_embeddings(texts=[text_input], output_dimensionality=self.config.embedding_dims)
|
||||
|
||||
return embeddings[0].values
|
||||
|
||||
Reference in New Issue
Block a user