Add config option for vertex embedding tasks (#2266)

This commit is contained in:
Wonbin Kim
2025-02-28 18:50:05 +09:00
committed by GitHub
parent 8143f86be6
commit 6acb00731d
14 changed files with 141 additions and 48 deletions

View File

@@ -27,6 +27,9 @@ class BaseEmbedderConfig(ABC):
http_client_proxies: Optional[Union[Dict, str]] = None,
# VertexAI specific
vertex_credentials_json: Optional[str] = None,
memory_add_embedding_type: Optional[str] = None,
memory_update_embedding_type: Optional[str] = None,
memory_search_embedding_type: Optional[str] = None,
):
"""
Initializes a configuration class instance for the Embeddings.
@@ -47,6 +50,14 @@ class BaseEmbedderConfig(ABC):
:type azure_kwargs: Optional[Dict[str, Any]], defaults a dict inside init
:param http_client_proxies: The proxy server settings used to create self.http_client, defaults to None
:type http_client_proxies: Optional[Dict | str], optional
:param vertex_credentials_json: The path to the Vertex AI credentials JSON file, defaults to None
:type vertex_credentials_json: Optional[str], optional
:param memory_add_embedding_type: The type of embedding to use for the add memory action, defaults to None
:type memory_add_embedding_type: Optional[str], optional
:param memory_update_embedding_type: The type of embedding to use for the update memory action, defaults to None
:type memory_update_embedding_type: Optional[str], optional
:param memory_search_embedding_type: The type of embedding to use for the search memory action, defaults to None
:type memory_search_embedding_type: Optional[str], optional
"""
self.model = model
@@ -68,3 +79,6 @@ class BaseEmbedderConfig(ABC):
# VertexAI specific
self.vertex_credentials_json = vertex_credentials_json
self.memory_add_embedding_type = memory_add_embedding_type
self.memory_update_embedding_type = memory_update_embedding_type
self.memory_search_embedding_type = memory_search_embedding_type

View File

@@ -1,5 +1,5 @@
import os
from typing import Optional
from typing import Literal, Optional
from openai import AzureOpenAI
@@ -26,13 +26,13 @@ class AzureOpenAIEmbedding(EmbeddingBase):
default_headers=default_headers,
)
def embed(self, text):
def embed(self, text, memory_action:Optional[Literal["add", "search", "update"]] = None):
"""
Get the embedding for the given text using OpenAI.
Args:
text (str): The text to embed.
memory_action (optional): The type of embedding to use. Must be one of "add", "search", or "update". Defaults to None.
Returns:
list: The embedding vector.
"""

View File

@@ -1,5 +1,5 @@
from abc import ABC, abstractmethod
from typing import Optional
from typing import Literal, Optional
from mem0.configs.embeddings.base import BaseEmbedderConfig
@@ -18,13 +18,13 @@ class EmbeddingBase(ABC):
self.config = config
@abstractmethod
def embed(self, text):
def embed(self, text, memory_action:Optional[Literal["add", "search", "update"]]):
"""
Get the embedding for the given text.
Args:
text (str): The text to embed.
memory_action (optional): The type of embedding to use. Must be one of "add", "search", or "update". Defaults to None.
Returns:
list: The embedding vector.
"""

View File

@@ -1,5 +1,5 @@
import os
from typing import Optional
from typing import Literal, Optional
import google.generativeai as genai
@@ -18,11 +18,12 @@ class GoogleGenAIEmbedding(EmbeddingBase):
genai.configure(api_key=api_key)
def embed(self, text):
def embed(self, text, memory_action:Optional[Literal["add", "search", "update"]] = None):
"""
Get the embedding for the given text using Google Generative AI.
Args:
text (str): The text to embed.
memory_action (optional): The type of embedding to use. Must be one of "add", "search", or "update". Defaults to None.
Returns:
list: The embedding vector.
"""

View File

@@ -1,4 +1,4 @@
from typing import Optional
from typing import Literal, Optional
from sentence_transformers import SentenceTransformer
@@ -16,13 +16,13 @@ class HuggingFaceEmbedding(EmbeddingBase):
self.config.embedding_dims = self.config.embedding_dims or self.model.get_sentence_embedding_dimension()
def embed(self, text):
def embed(self, text, memory_action:Optional[Literal["add", "search", "update"]] = None):
"""
Get the embedding for the given text using Hugging Face.
Args:
text (str): The text to embed.
memory_action (optional): The type of embedding to use. Must be one of "add", "search", or "update". Defaults to None.
Returns:
list: The embedding vector.
"""

View File

@@ -1,6 +1,6 @@
import subprocess
import sys
from typing import Optional
from typing import Literal, Optional
from mem0.configs.embeddings.base import BaseEmbedderConfig
from mem0.embeddings.base import EmbeddingBase
@@ -39,13 +39,13 @@ class OllamaEmbedding(EmbeddingBase):
if not any(model.get("name") == self.config.model for model in local_models):
self.client.pull(self.config.model)
def embed(self, text):
def embed(self, text, memory_action:Optional[Literal["add", "search", "update"]] = None):
"""
Get the embedding for the given text using Ollama.
Args:
text (str): The text to embed.
memory_action (optional): The type of embedding to use. Must be one of "add", "search", or "update". Defaults to None.
Returns:
list: The embedding vector.
"""

View File

@@ -1,5 +1,5 @@
import os
from typing import Optional
from typing import Literal, Optional
from openai import OpenAI
@@ -18,13 +18,13 @@ class OpenAIEmbedding(EmbeddingBase):
base_url = self.config.openai_base_url or os.getenv("OPENAI_API_BASE")
self.client = OpenAI(api_key=api_key, base_url=base_url)
def embed(self, text):
def embed(self, text, memory_action:Optional[Literal["add", "search", "update"]] = None):
"""
Get the embedding for the given text using OpenAI.
Args:
text (str): The text to embed.
memory_action (optional): The type of embedding to use. Must be one of "add", "search", or "update". Defaults to None.
Returns:
list: The embedding vector.
"""

View File

@@ -1,5 +1,5 @@
import os
from typing import Optional
from typing import Literal, Optional
from together import Together
@@ -17,13 +17,13 @@ class TogetherEmbedding(EmbeddingBase):
self.config.embedding_dims = self.config.embedding_dims or 768
self.client = Together(api_key=api_key)
def embed(self, text):
def embed(self, text, memory_action:Optional[Literal["add", "search", "update"]] = None):
"""
Get the embedding for the given text using OpenAI.
Args:
text (str): The text to embed.
memory_action (optional): The type of embedding to use. Must be one of "add", "search", or "update". Defaults to None.
Returns:
list: The embedding vector.
"""

View File

@@ -1,7 +1,7 @@
import os
from typing import Optional
from typing import Literal, Optional
from vertexai.language_models import TextEmbeddingModel
from vertexai.language_models import TextEmbeddingInput, TextEmbeddingModel
from mem0.configs.embeddings.base import BaseEmbedderConfig
from mem0.embeddings.base import EmbeddingBase
@@ -13,7 +13,13 @@ class VertexAIEmbedding(EmbeddingBase):
self.config.model = self.config.model or "text-embedding-004"
self.config.embedding_dims = self.config.embedding_dims or 256
self.embedding_types = {
"add": self.config.memory_add_embedding_type or "RETRIEVAL_DOCUMENT",
"update": self.config.memory_update_embedding_type or "RETRIEVAL_DOCUMENT",
"search": self.config.memory_search_embedding_type or "RETRIEVAL_QUERY"
}
credentials_path = self.config.vertex_credentials_json
if credentials_path:
@@ -25,16 +31,24 @@ class VertexAIEmbedding(EmbeddingBase):
self.model = TextEmbeddingModel.from_pretrained(self.config.model)
def embed(self, text):
def embed(self, text, memory_action:Optional[Literal["add", "search", "update"]] = None):
"""
Get the embedding for the given text using Vertex AI.
Args:
text (str): The text to embed.
memory_action (optional): The type of embedding to use. Must be one of "add", "search", or "update". Defaults to None.
Returns:
list: The embedding vector.
"""
embeddings = self.model.get_embeddings(texts=[text], output_dimensionality=self.config.embedding_dims)
embedding_type = "SEMANTIC_SIMILARITY"
if memory_action is not None:
if memory_action not in self.embedding_types:
raise ValueError(f"Invalid memory action: {memory_action}")
embedding_type = self.embedding_types[memory_action]
text_input = TextEmbeddingInput(text=text, task_type=embedding_type)
embeddings = self.model.get_embeddings(texts=[text_input], output_dimensionality=self.config.embedding_dims)
return embeddings[0].values

View File

@@ -9,7 +9,7 @@ from typing import Any, Dict
import pytz
from pydantic import ValidationError
from mem0.memory.utils import parse_vision_messages
from mem0.configs.base import MemoryConfig, MemoryItem
from mem0.configs.prompts import get_update_memory_messages
from mem0.memory.base import MemoryBase
@@ -19,6 +19,7 @@ from mem0.memory.telemetry import capture_event
from mem0.memory.utils import (
get_fact_retrieval_messages,
parse_messages,
parse_vision_messages,
remove_code_blocks,
)
from mem0.utils.factory import EmbedderFactory, LlmFactory, VectorStoreFactory
@@ -167,7 +168,7 @@ class Memory(MemoryBase):
retrieved_old_memory = []
new_message_embeddings = {}
for new_mem in new_retrieved_facts:
messages_embeddings = self.embedding_model.embed(new_mem)
messages_embeddings = self.embedding_model.embed(new_mem, "add")
new_message_embeddings[new_mem] = messages_embeddings
existing_memories = self.vector_store.search(
query=messages_embeddings,
@@ -446,7 +447,7 @@ class Memory(MemoryBase):
return original_memories
def _search_vector_store(self, query, filters, limit):
embeddings = self.embedding_model.embed(query)
embeddings = self.embedding_model.embed(query, "search")
memories = self.vector_store.search(query=embeddings, limit=limit, filters=filters)
excluded_keys = {
@@ -494,7 +495,7 @@ class Memory(MemoryBase):
"""
capture_event("mem0.update", self, {"memory_id": memory_id})
existing_embeddings = {data: self.embedding_model.embed(data)}
existing_embeddings = {data: self.embedding_model.embed(data, "update")}
self._update_memory(memory_id, data, existing_embeddings)
return {"message": "Memory updated successfully!"}
@@ -562,7 +563,7 @@ class Memory(MemoryBase):
if data in existing_embeddings:
embeddings = existing_embeddings[data]
else:
embeddings = self.embedding_model.embed(data)
embeddings = self.embedding_model.embed(data, "add")
memory_id = str(uuid.uuid4())
metadata = metadata or {}
metadata["data"] = data
@@ -603,7 +604,7 @@ class Memory(MemoryBase):
if data in existing_embeddings:
embeddings = existing_embeddings[data]
else:
embeddings = self.embedding_model.embed(data)
embeddings = self.embedding_model.embed(data, "update")
self.vector_store.update(
vector_id=memory_id,
vector=embeddings,