Mem0 livekit example (#2442)

This commit is contained in:
Parshva Daftari
2025-03-26 16:06:23 +05:30
committed by GitHub
parent 2004427acd
commit 69a91d5cbb
3 changed files with 362 additions and 1 deletions

View File

@@ -194,7 +194,8 @@
"examples/personalized-deep-research",
"examples/mem0-agentic-tool",
"examples/openai-inbuilt-tools",
"examples/mem0-openai-voice-demo"
"examples/mem0-openai-voice-demo",
"examples/mem0-livekit-voice-agent"
]
}
]

View File

@@ -0,0 +1,356 @@
---
title: 'Mem0 with Livekit Agents SDK'
description: 'Integrate memory capabilities into your voice agents using Mem0 and Livekit Agents SDK'
---
# Building Voice Agents with Memory using LiveKit and Mem0
This guide demonstrates how to create a memory-enabled voice assistant using LiveKit, Deepgram, OpenAI, and Mem0, focusing on creating an intelligent, context-aware travel planning agent.
## Prerequisites
Before you begin, make sure you have:
1. Installed Livekit Agents SDK with voice dependencies of silero and deepgram:
```bash
pip install livekit \
livekit-agents \
livekit-plugins-silero \
livekit-plugins-deepgram \
livekit-plugins-openai
```
2. Installed Mem0 SDK:
```bash
pip install mem0ai
```
3. Set up your API keys in a `.env` file:
```sh
LIVEKIT_URL=your_livekit_url
LIVEKIT_API_KEY=your_livekit_api_key
LIVEKIT_API_SECRET=your_livekit_api_secret
DEEPGRAM_API_KEY=your_deepgram_api_key
MEM0_API_KEY=your_mem0_api_key
OPENAI_API_KEY=your_openai_api_key
```
> **Note**: Make sure to have a Livekit and Deepgram account. You can find these variables `LIVEKIT_URL` , `LIVEKIT_API_KEY` and `LIVEKIT_API_SECRET` from [LiveKit Cloud Console](https://cloud.livekit.io/) and for more information you can refer this website [LiveKit Documentation](https://docs.livekit.io/home/cloud/keys-and-tokens/). For `DEEPGRAM_API_KEY` you can get from [Deepgram Console](https://console.deepgram.com/) refer this website [Deepgram Documentation](https://developers.deepgram.com/docs/create-additional-api-keys) for more details.
## Code Breakdown
Let's break down the key components of this implementation:
### 1. Setting Up Dependencies and Environment
```python
import asyncio
import logging
import os
from typing import List, Dict, Any, Annotated
import aiohttp
from dotenv import load_dotenv
from livekit.agents import (
AutoSubscribe,
JobContext,
JobProcess,
WorkerOptions,
cli,
llm,
metrics,
)
from livekit import rtc, api
from livekit.agents.pipeline import VoicePipelineAgent
from livekit.plugins import deepgram, openai, silero
from mem0 import AsyncMemoryClient
# Load environment variables
load_dotenv()
# Configure logging
logger = logging.getLogger("memory-assistant")
logger.setLevel(logging.INFO)
# Define a global user ID for simplicity
USER_ID = "voice_user"
# Initialize Mem0 client
mem0 = AsyncMemoryClient()
```
This section handles:
- Importing required modules
- Loading environment variables
- Setting up logging
- Extracting user identification
- Initializing the Mem0 client
### 2. Memory Enrichment Function
```python
async def _enrich_with_memory(agent: VoicePipelineAgent, chat_ctx: llm.ChatContext):
"""Add memories and Augment chat context with relevant memories"""
if not chat_ctx.messages:
return
# Store user message in Mem0
user_msg = chat_ctx.messages[-1]
await mem0.add(
[{"role": "user", "content": user_msg.content}],
user_id=USER_ID
)
# Search for relevant memories
results = await mem0.search(
user_msg.content,
user_id=USER_ID,
)
# Augment context with retrieved memories
if results:
memories = ' '.join([result["memory"] for result in results])
logger.info(f"Enriching with memory: {memories}")
rag_msg = llm.ChatMessage.create(
text=f"Relevant Memory: {memories}\n",
role="assistant",
)
# Modify chat context with retrieved memories
chat_ctx.messages[-1] = rag_msg
chat_ctx.messages.append(user_msg)
```
This function:
- Stores user messages in Mem0
- Performs semantic search for relevant memories
- Augments the chat context with retrieved memories
- Enables contextually aware responses
### 3. Prewarm and Entrypoint Functions
```python
def prewarm_process(proc: JobProcess):
# Preload silero VAD in memory to speed up session start
proc.userdata["vad"] = silero.VAD.load()
async def entrypoint(ctx: JobContext):
# Connect to LiveKit room
await ctx.connect(auto_subscribe=AutoSubscribe.AUDIO_ONLY)
# Wait for participant
participant = await ctx.wait_for_participant()
# Initialize Mem0 client
mem0 = AsyncMemoryClient()
# Define initial system context
initial_ctx = llm.ChatContext().append(
role="system",
text=(
"""
You are a helpful voice assistant.
You are a travel guide named George and will help the user to plan a travel trip of their dreams.
You should help the user plan for various adventures like work retreats, family vacations or solo backpacking trips.
You should be careful to not suggest anything that would be dangerous, illegal or inappropriate.
You can remember past interactions and use them to inform your answers.
Use semantic memory retrieval to provide contextually relevant responses.
"""
),
)
# Create VoicePipelineAgent with memory capabilities
agent = VoicePipelineAgent(
chat_ctx=initial_ctx,
vad=silero.VAD.load(),
stt=deepgram.STT(),
llm=openai.LLM(model="gpt-4o-mini"),
tts=openai.TTS(),
before_llm_cb=_enrich_with_memory,
)
# Start agent and initial greeting
agent.start(ctx.room, participant)
await agent.say(
"Hello! I'm George. Can I help you plan an upcoming trip? ",
allow_interruptions=True
)
# Run the application
if __name__ == "__main__":
cli.run_app(WorkerOptions(entrypoint_fnc=entrypoint, prewarm_fnc=prewarm_process))
```
The entrypoint function:
- Connects to LiveKit room
- Initializes Mem0 memory client
- Sets up initial system context
- Creates a VoicePipelineAgent with memory enrichment
- Starts the agent with an initial greeting
## Create a Memory-Enabled Voice Agent
Now that we've explained each component, here's the complete implementation that combines OpenAI Agents SDK for voice with Mem0's memory capabilities:
```python
import asyncio
import logging
import os
from typing import List, Dict, Any, Annotated
import aiohttp
from dotenv import load_dotenv
from livekit.agents import (
AutoSubscribe,
JobContext,
JobProcess,
WorkerOptions,
cli,
llm,
metrics,
)
from livekit import rtc, api
from livekit.agents.pipeline import VoicePipelineAgent
from livekit.plugins import deepgram, openai, silero
from mem0 import AsyncMemoryClient
# Load environment variables
load_dotenv()
# Configure logging
logger = logging.getLogger("memory-assistant")
logger.setLevel(logging.INFO)
# Define a global user ID for simplicity
USER_ID = "voice_user"
# Initialize Mem0 memory client
mem0 = AsyncMemoryClient()
def prewarm_process(proc: JobProcess):
# Preload silero VAD in memory to speed up session start
proc.userdata["vad"] = silero.VAD.load()
async def entrypoint(ctx: JobContext):
# Connect to LiveKit room
await ctx.connect(auto_subscribe=AutoSubscribe.AUDIO_ONLY)
# Wait for participant
participant = await ctx.wait_for_participant()
async def _enrich_with_memory(agent: VoicePipelineAgent, chat_ctx: llm.ChatContext):
"""Add memories and Augment chat context with relevant memories"""
if not chat_ctx.messages:
return
# Store user message in Mem0
user_msg = chat_ctx.messages[-1]
await mem0.add(
[{"role": "user", "content": user_msg.content}],
user_id=USER_ID
)
# Search for relevant memories
results = await mem0.search(
user_msg.content,
user_id=USER_ID,
)
# Augment context with retrieved memories
if results:
memories = ' '.join([result["memory"] for result in results])
logger.info(f"Enriching with memory: {memories}")
rag_msg = llm.ChatMessage.create(
text=f"Relevant Memory: {memories}\n",
role="assistant",
)
# Modify chat context with retrieved memories
chat_ctx.messages[-1] = rag_msg
chat_ctx.messages.append(user_msg)
# Define initial system context
initial_ctx = llm.ChatContext().append(
role="system",
text=(
"""
You are a helpful voice assistant.
You are a travel guide named George and will help the user to plan a travel trip of their dreams.
You should help the user plan for various adventures like work retreats, family vacations or solo backpacking trips.
You should be careful to not suggest anything that would be dangerous, illegal or inappropriate.
You can remember past interactions and use them to inform your answers.
Use semantic memory retrieval to provide contextually relevant responses.
"""
),
)
# Create VoicePipelineAgent with memory capabilities
agent = VoicePipelineAgent(
chat_ctx=initial_ctx,
vad=silero.VAD.load(),
stt=deepgram.STT(),
llm=openai.LLM(model="gpt-4o-mini"),
tts=openai.TTS(),
before_llm_cb=_enrich_with_memory,
)
# Start agent and initial greeting
agent.start(ctx.room, participant)
await agent.say(
"Hello! I'm George. Can I help you plan an upcoming trip? ",
allow_interruptions=True
)
# Run the application
if __name__ == "__main__":
cli.run_app(WorkerOptions(entrypoint_fnc=entrypoint, prewarm_fnc=prewarm_process))
```
## Key Features of This Implementation
1. **Semantic Memory Retrieval**: Uses Mem0 to store and retrieve contextually relevant memories
2. **Voice Interaction**: Leverages LiveKit for voice communication
3. **Intelligent Context Management**: Augments conversations with past interactions
4. **Travel Planning Specialization**: Focused on creating a helpful travel guide assistant
## Running the Example
To run this example:
1. Install all required dependencies
2. Set up your `.env` file with the necessary API keys
3. Ensure your microphone and audio setup are configured
4. Run the script with Python 3.11 or newer and with the following command:
```sh
python mem0-livekit-voice-agent.py start
```
5. After the script starts, you can interact with the voice agent using [Livekit's Agent Platform](https://agents-playground.livekit.io/) and Connect to the agent inorder to start conversations.
## Best Practices for Voice Agents with Memory
1. **Context Preservation**: Store enough context with each memory for effective retrieval
2. **Privacy Considerations**: Implement secure memory management
3. **Relevant Memory Filtering**: Use semantic search to retrieve only the most pertinent memories
4. **Error Handling**: Implement robust error handling for memory operations
## Debugging Function Tools
- To run the script in debug mode simply start the assistant with `dev` mode:
```sh
python mem0-livekit-voice-agent.py dev
```
- When working with memory-enabled voice agents, use Python's `logging` module for effective debugging:
```python
import logging
# Set up logging
logging.basicConfig(
level=logging.DEBUG,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger("memory_voice_agent")
```

View File

@@ -69,5 +69,9 @@ Explore how **Mem0** can power real-world applications and bring personalized, i
<Card title="Mem0 OpenAI Voice Demo" icon="robot" href="/examples/mem0-openai-voice-demo">
Use Mem0's memory capabilities with OpenAI's Inbuilt Tools to create AI agents with persistent memory.
</Card>
<Card title="Mem0 Livekit Voice Demo" icon="robot" href="/examples/mem0-livekit-voice-agent">
Use Mem0's memory capabilities with Livekit's Inbuilt Tools to create AI agents with persistent memory.
</Card>
</CardGroup>