Add configs to VectorDB docs (#1699)

This commit is contained in:
Dev Khant
2024-08-14 00:27:04 +05:30
committed by GitHub
parent 2180b83a8b
commit 64218db7bd
7 changed files with 223 additions and 108 deletions

View File

@@ -0,0 +1,35 @@
[Chroma](https://www.trychroma.com/) is an AI-native open-source vector database that simplifies building LLM apps by providing tools for storing, embedding, and searching embeddings with a focus on simplicity and speed.
### Usage
```python
import os
from mem0 import Memory
os.environ["OPENAI_API_KEY"] = "sk-xx"
config = {
"vector_store": {
"provider": "chroma",
"config": {
"collection_name": "test",
"path": "db",
}
}
}
m = Memory.from_config(config)
m.add("Likes to play cricket on weekends", user_id="alice", metadata={"category": "hobbies"})
```
### Config
Here are the parameters available for configuring Chroma:
| Parameter | Description | Default Value |
| --- | --- | --- |
| `collection_name` | The name of the collection | `mem0` |
| `client` | Custom client for Chroma | `None` |
| `path` | Path for the Chroma database | `db` |
| `host` | The host where the Chroma server is running | `None` |
| `port` | The port where the Chroma server is running | `None` |

View File

@@ -0,0 +1,39 @@
[pgvector](https://github.com/pgvector/pgvector) is open-source vector similarity search for Postgres. After connecting with postgres run `CREATE EXTENSION IF NOT EXISTS vector;` to create the vector extension.
### Usage
```python
import os
from mem0 import Memory
os.environ["OPENAI_API_KEY"] = "sk-xx"
config = {
"vector_store": {
"provider": "pgvector",
"config": {
"user": "test",
"password": "123",
"host": "127.0.0.1",
"port": "5432",
}
}
}
m = Memory.from_config(config)
m.add("Likes to play cricket on weekends", user_id="alice", metadata={"category": "hobbies"})
```
### Config
Here's the parameters available for configuring pgvector:
| Parameter | Description | Default Value |
| --- | --- | --- |
| `dbname` | The name of the database | `postgres` |
| `collection_name` | The name of the collection | `mem0` |
| `embedding_model_dims` | Dimensions of the embedding model | `1536` |
| `user` | User name to connect to the database | `None` |
| `password` | Password to connect to the database | `None` |
| `host` | The host where the Postgres server is running | `None` |
| `port` | The port where the Postgres server is running | `None` |

View File

@@ -0,0 +1,40 @@
[Qdrant](https://qdrant.tech/) is an open-source vector search engine. It is designed to work with large-scale datasets and provides a high-performance search engine for vector data.
### Usage
```python
import os
from mem0 import Memory
os.environ["OPENAI_API_KEY"] = "sk-xx"
config = {
"vector_store": {
"provider": "qdrant",
"config": {
"collection_name": "test",
"host": "localhost",
"port": 6333,
}
}
}
m = Memory.from_config(config)
m.add("Likes to play cricket on weekends", user_id="alice", metadata={"category": "hobbies"})
```
### Config
Let's see the available parameters for the `qdrant` config:
| Parameter | Description | Default Value |
| --- | --- | --- |
| `collection_name` | The name of the collection to store the vectors | `mem0` |
| `embedding_model_dims` | Dimensions of the embedding model | `1536` |
| `client` | Custom client for qdrant | `None` |
| `host` | The host where the qdrant server is running | `None` |
| `port` | The port where the qdrant server is running | `None` |
| `path` | Path for the qdrant database | `/tmp/qdrant` |
| `url` | Full URL for the qdrant server | `None` |
| `api_key` | API key for the qdrant server | `None` |
| `on_disk` | For enabling persistent storage | `False` |