Files
t6_mem0/docs/components/vectordbs/dbs/qdrant.mdx
2024-08-13 11:57:04 -07:00

40 lines
1.3 KiB
Plaintext

[Qdrant](https://qdrant.tech/) is an open-source vector search engine. It is designed to work with large-scale datasets and provides a high-performance search engine for vector data.
### Usage
```python
import os
from mem0 import Memory
os.environ["OPENAI_API_KEY"] = "sk-xx"
config = {
"vector_store": {
"provider": "qdrant",
"config": {
"collection_name": "test",
"host": "localhost",
"port": 6333,
}
}
}
m = Memory.from_config(config)
m.add("Likes to play cricket on weekends", user_id="alice", metadata={"category": "hobbies"})
```
### Config
Let's see the available parameters for the `qdrant` config:
| Parameter | Description | Default Value |
| --- | --- | --- |
| `collection_name` | The name of the collection to store the vectors | `mem0` |
| `embedding_model_dims` | Dimensions of the embedding model | `1536` |
| `client` | Custom client for qdrant | `None` |
| `host` | The host where the qdrant server is running | `None` |
| `port` | The port where the qdrant server is running | `None` |
| `path` | Path for the qdrant database | `/tmp/qdrant` |
| `url` | Full URL for the qdrant server | `None` |
| `api_key` | API key for the qdrant server | `None` |
| `on_disk` | For enabling persistent storage | `False` |