Add configs to VectorDB docs (#1699)
This commit is contained in:
72
docs/components/vectordbs/config.mdx
Normal file
72
docs/components/vectordbs/config.mdx
Normal file
@@ -0,0 +1,72 @@
|
||||
## What is Config?
|
||||
|
||||
Config in mem0 is a dictionary that specifies the settings for your vector database. It allows you to customize the behavior and connection details of your chosen vector store.
|
||||
|
||||
## How to Define Config
|
||||
|
||||
The config is defined as a Python dictionary with two main keys:
|
||||
- `vector_store`: Specifies the vector database provider and its configuration
|
||||
- `provider`: The name of the vector database (e.g., "chroma", "pgvector", "qdrant")
|
||||
- `config`: A nested dictionary containing provider-specific settings
|
||||
|
||||
## How to Use Config
|
||||
|
||||
Here's a general example of how to use the config with mem0:
|
||||
|
||||
```python
|
||||
import os
|
||||
from mem0 import Memory
|
||||
|
||||
os.environ["OPENAI_API_KEY"] = "sk-xx"
|
||||
|
||||
config = {
|
||||
"vector_store": {
|
||||
"provider": "your_chosen_provider",
|
||||
"config": {
|
||||
# Provider-specific settings go here
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
m = Memory.from_config(config)
|
||||
m.add("Your text here", user_id="user", metadata={"category": "example"})
|
||||
```
|
||||
|
||||
## Why is Config Needed?
|
||||
|
||||
Config is essential for:
|
||||
1. Specifying which vector database to use.
|
||||
2. Providing necessary connection details (e.g., host, port, credentials).
|
||||
3. Customizing database-specific settings (e.g., collection name, path).
|
||||
4. Ensuring proper initialization and connection to your chosen vector store.
|
||||
|
||||
## Master List of All Params in Config
|
||||
|
||||
Here's a comprehensive list of all parameters that can be used across different vector databases:
|
||||
|
||||
| Parameter | Description |
|
||||
|-----------|-------------|
|
||||
| `collection_name` | Name of the collection |
|
||||
| `embedding_model_dims` | Dimensions of the embedding model |
|
||||
| `client` | Custom client for the database |
|
||||
| `path` | Path for the database |
|
||||
| `host` | Host where the server is running |
|
||||
| `port` | Port where the server is running |
|
||||
| `user` | Username for database connection |
|
||||
| `password` | Password for database connection |
|
||||
| `dbname` | Name of the database |
|
||||
| `url` | Full URL for the server |
|
||||
| `api_key` | API key for the server |
|
||||
| `on_disk` | Enable persistent storage |
|
||||
|
||||
## Customizing Config
|
||||
|
||||
Each vector database has its own specific configuration requirements. To customize the config for your chosen vector store:
|
||||
|
||||
1. Identify the vector database you want to use from [supported vector databases](./dbs).
|
||||
2. Refer to the `Config` section in the respective vector database's documentation.
|
||||
3. Include only the relevant parameters for your chosen database in the `config` dictionary.
|
||||
|
||||
## Supported Vector Databases
|
||||
|
||||
For detailed information on configuring specific vector databases, please visit the [Supported Vector Databases](./dbs) section. There you'll find individual pages for each supported vector store with provider-specific usage examples and configuration details.
|
||||
35
docs/components/vectordbs/dbs/chroma.mdx
Normal file
35
docs/components/vectordbs/dbs/chroma.mdx
Normal file
@@ -0,0 +1,35 @@
|
||||
[Chroma](https://www.trychroma.com/) is an AI-native open-source vector database that simplifies building LLM apps by providing tools for storing, embedding, and searching embeddings with a focus on simplicity and speed.
|
||||
|
||||
### Usage
|
||||
|
||||
```python
|
||||
import os
|
||||
from mem0 import Memory
|
||||
|
||||
os.environ["OPENAI_API_KEY"] = "sk-xx"
|
||||
|
||||
config = {
|
||||
"vector_store": {
|
||||
"provider": "chroma",
|
||||
"config": {
|
||||
"collection_name": "test",
|
||||
"path": "db",
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
m = Memory.from_config(config)
|
||||
m.add("Likes to play cricket on weekends", user_id="alice", metadata={"category": "hobbies"})
|
||||
```
|
||||
|
||||
### Config
|
||||
|
||||
Here are the parameters available for configuring Chroma:
|
||||
|
||||
| Parameter | Description | Default Value |
|
||||
| --- | --- | --- |
|
||||
| `collection_name` | The name of the collection | `mem0` |
|
||||
| `client` | Custom client for Chroma | `None` |
|
||||
| `path` | Path for the Chroma database | `db` |
|
||||
| `host` | The host where the Chroma server is running | `None` |
|
||||
| `port` | The port where the Chroma server is running | `None` |
|
||||
39
docs/components/vectordbs/dbs/pgvector.mdx
Normal file
39
docs/components/vectordbs/dbs/pgvector.mdx
Normal file
@@ -0,0 +1,39 @@
|
||||
[pgvector](https://github.com/pgvector/pgvector) is open-source vector similarity search for Postgres. After connecting with postgres run `CREATE EXTENSION IF NOT EXISTS vector;` to create the vector extension.
|
||||
|
||||
### Usage
|
||||
|
||||
```python
|
||||
import os
|
||||
from mem0 import Memory
|
||||
|
||||
os.environ["OPENAI_API_KEY"] = "sk-xx"
|
||||
|
||||
config = {
|
||||
"vector_store": {
|
||||
"provider": "pgvector",
|
||||
"config": {
|
||||
"user": "test",
|
||||
"password": "123",
|
||||
"host": "127.0.0.1",
|
||||
"port": "5432",
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
m = Memory.from_config(config)
|
||||
m.add("Likes to play cricket on weekends", user_id="alice", metadata={"category": "hobbies"})
|
||||
```
|
||||
|
||||
### Config
|
||||
|
||||
Here's the parameters available for configuring pgvector:
|
||||
|
||||
| Parameter | Description | Default Value |
|
||||
| --- | --- | --- |
|
||||
| `dbname` | The name of the database | `postgres` |
|
||||
| `collection_name` | The name of the collection | `mem0` |
|
||||
| `embedding_model_dims` | Dimensions of the embedding model | `1536` |
|
||||
| `user` | User name to connect to the database | `None` |
|
||||
| `password` | Password to connect to the database | `None` |
|
||||
| `host` | The host where the Postgres server is running | `None` |
|
||||
| `port` | The port where the Postgres server is running | `None` |
|
||||
40
docs/components/vectordbs/dbs/qdrant.mdx
Normal file
40
docs/components/vectordbs/dbs/qdrant.mdx
Normal file
@@ -0,0 +1,40 @@
|
||||
[Qdrant](https://qdrant.tech/) is an open-source vector search engine. It is designed to work with large-scale datasets and provides a high-performance search engine for vector data.
|
||||
|
||||
### Usage
|
||||
|
||||
```python
|
||||
import os
|
||||
from mem0 import Memory
|
||||
|
||||
os.environ["OPENAI_API_KEY"] = "sk-xx"
|
||||
|
||||
config = {
|
||||
"vector_store": {
|
||||
"provider": "qdrant",
|
||||
"config": {
|
||||
"collection_name": "test",
|
||||
"host": "localhost",
|
||||
"port": 6333,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
m = Memory.from_config(config)
|
||||
m.add("Likes to play cricket on weekends", user_id="alice", metadata={"category": "hobbies"})
|
||||
```
|
||||
|
||||
### Config
|
||||
|
||||
Let's see the available parameters for the `qdrant` config:
|
||||
|
||||
| Parameter | Description | Default Value |
|
||||
| --- | --- | --- |
|
||||
| `collection_name` | The name of the collection to store the vectors | `mem0` |
|
||||
| `embedding_model_dims` | Dimensions of the embedding model | `1536` |
|
||||
| `client` | Custom client for qdrant | `None` |
|
||||
| `host` | The host where the qdrant server is running | `None` |
|
||||
| `port` | The port where the qdrant server is running | `None` |
|
||||
| `path` | Path for the qdrant database | `/tmp/qdrant` |
|
||||
| `url` | Full URL for the qdrant server | `None` |
|
||||
| `api_key` | API key for the qdrant server | `None` |
|
||||
| `on_disk` | For enabling persistent storage | `False` |
|
||||
24
docs/components/vectordbs/overview.mdx
Normal file
24
docs/components/vectordbs/overview.mdx
Normal file
@@ -0,0 +1,24 @@
|
||||
---
|
||||
title: Overview
|
||||
---
|
||||
|
||||
Mem0 includes built-in support for various popular databases. Memory can utilize the database provided by the user, ensuring efficient use for specific needs.
|
||||
|
||||
## Usage
|
||||
|
||||
To utilize a vector database, you must provide a configuration to customize its usage. If no configuration is supplied, a default configuration will be applied, and `Qdrant` will be used as the vector database.
|
||||
|
||||
For a comprehensive list of available parameters for vector database configuration, please refer to [Config](./config).
|
||||
|
||||
To view all supported vector databases, visit the [Supported Vector Databases](./dbs).
|
||||
|
||||
## Common issues
|
||||
|
||||
### Using model with different dimensions
|
||||
|
||||
If you are using customized model, which is having different dimensions other than 1536
|
||||
for example 768, you may encounter below error:
|
||||
|
||||
`ValueError: shapes (0,1536) and (768,) not aligned: 1536 (dim 1) != 768 (dim 0)`
|
||||
|
||||
you could add `"embedding_model_dims": 768,` to the config of the vector_store to overcome this issue.
|
||||
Reference in New Issue
Block a user