Add support for Hugging Face Inference Endpoint as LLM (#1143)
This commit is contained in:
@@ -494,6 +494,49 @@ llm:
|
||||
```
|
||||
</CodeGroup>
|
||||
|
||||
### Custom Endpoints
|
||||
|
||||
|
||||
You can also use [Hugging Face Inference Endpoints](https://huggingface.co/docs/inference-endpoints/index#-inference-endpoints) to access custom endpoints. First, set the `HUGGINGFACE_ACCESS_TOKEN` as above.
|
||||
|
||||
Then, load the app using the config yaml file:
|
||||
|
||||
<CodeGroup>
|
||||
|
||||
```python main.py
|
||||
import os
|
||||
from embedchain import App
|
||||
|
||||
os.environ["HUGGINGFACE_ACCESS_TOKEN"] = "xxx"
|
||||
|
||||
# load llm configuration from config.yaml file
|
||||
app = App.from_config(config_path="config.yaml")
|
||||
```
|
||||
|
||||
```yaml config.yaml
|
||||
llm:
|
||||
provider: huggingface
|
||||
config:
|
||||
endpoint: https://api-inference.huggingface.co/models/gpt2 # replace with your personal endpoint
|
||||
```
|
||||
</CodeGroup>
|
||||
|
||||
If your endpoint requires additional parameters, you can pass them in the `model_kwargs` field:
|
||||
|
||||
```
|
||||
llm:
|
||||
provider: huggingface
|
||||
config:
|
||||
endpoint: <YOUR_ENDPOINT_URL_HERE>
|
||||
model_kwargs:
|
||||
max_new_tokens: 100
|
||||
temperature: 0.5
|
||||
```
|
||||
|
||||
Currently only supports `text-generation` and `text2text-generation` for now [[ref](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html?highlight=huggingfaceendpoint#)].
|
||||
|
||||
See langchain's [hugging face endpoint](https://python.langchain.com/docs/integrations/chat/huggingface#huggingfaceendpoint) for more information.
|
||||
|
||||
## Llama2
|
||||
|
||||
Llama2 is integrated through [Replicate](https://replicate.com/). Set `REPLICATE_API_TOKEN` in environment variable which you can obtain from [their platform](https://replicate.com/account/api-tokens).
|
||||
|
||||
@@ -72,6 +72,8 @@ class BaseLlmConfig(BaseConfig):
|
||||
query_type: Optional[str] = None,
|
||||
callbacks: Optional[List] = None,
|
||||
api_key: Optional[str] = None,
|
||||
endpoint: Optional[str] = None,
|
||||
model_kwargs: Optional[Dict[str, Any]] = {},
|
||||
):
|
||||
"""
|
||||
Initializes a configuration class instance for the LLM.
|
||||
@@ -105,6 +107,12 @@ class BaseLlmConfig(BaseConfig):
|
||||
:type system_prompt: Optional[str], optional
|
||||
:param where: A dictionary of key-value pairs to filter the database results., defaults to None
|
||||
:type where: Dict[str, Any], optional
|
||||
:param api_key: The api key of the custom endpoint, defaults to None
|
||||
:type api_key: Optional[str], optional
|
||||
:param endpoint: The api url of the custom endpoint, defaults to None
|
||||
:type endpoint: Optional[str], optional
|
||||
:param model_kwargs: A dictionary of key-value pairs to pass to the model, defaults to None
|
||||
:type model_kwargs: Optional[Dict[str, Any]], optional
|
||||
:param callbacks: Langchain callback functions to use, defaults to None
|
||||
:type callbacks: Optional[List], optional
|
||||
:raises ValueError: If the template is not valid as template should
|
||||
@@ -132,7 +140,8 @@ class BaseLlmConfig(BaseConfig):
|
||||
self.query_type = query_type
|
||||
self.callbacks = callbacks
|
||||
self.api_key = api_key
|
||||
|
||||
self.endpoint = endpoint
|
||||
self.model_kwargs = model_kwargs
|
||||
if type(prompt) is str:
|
||||
prompt = Template(prompt)
|
||||
|
||||
|
||||
@@ -3,6 +3,7 @@ import logging
|
||||
import os
|
||||
from typing import Optional
|
||||
|
||||
from langchain.llms.huggingface_endpoint import HuggingFaceEndpoint
|
||||
from langchain.llms.huggingface_hub import HuggingFaceHub
|
||||
|
||||
from embedchain.config import BaseLlmConfig
|
||||
@@ -33,6 +34,15 @@ class HuggingFaceLlm(BaseLlm):
|
||||
|
||||
@staticmethod
|
||||
def _get_answer(prompt: str, config: BaseLlmConfig) -> str:
|
||||
if config.model:
|
||||
return HuggingFaceLlm._from_model(prompt=prompt, config=config)
|
||||
elif config.endpoint:
|
||||
return HuggingFaceLlm._from_endpoint(prompt=prompt, config=config)
|
||||
else:
|
||||
raise ValueError("Either `model` or `endpoint` must be set")
|
||||
|
||||
@staticmethod
|
||||
def _from_model(prompt: str, config: BaseLlmConfig) -> str:
|
||||
model_kwargs = {
|
||||
"temperature": config.temperature or 0.1,
|
||||
"max_new_tokens": config.max_tokens,
|
||||
@@ -52,3 +62,13 @@ class HuggingFaceLlm(BaseLlm):
|
||||
)
|
||||
|
||||
return llm(prompt)
|
||||
|
||||
@staticmethod
|
||||
def _from_endpoint(prompt: str, config: BaseLlmConfig) -> str:
|
||||
llm = HuggingFaceEndpoint(
|
||||
huggingfacehub_api_token=os.environ["HUGGINGFACE_ACCESS_TOKEN"],
|
||||
endpoint_url=config.endpoint,
|
||||
task="text-generation",
|
||||
model_kwargs=config.model_kwargs,
|
||||
)
|
||||
return llm(prompt)
|
||||
|
||||
@@ -415,6 +415,7 @@ def validate_config(config_data):
|
||||
Optional("where"): dict,
|
||||
Optional("query_type"): str,
|
||||
Optional("api_key"): str,
|
||||
Optional("endpoint"): str,
|
||||
},
|
||||
},
|
||||
Optional("vectordb"): {
|
||||
|
||||
@@ -15,6 +15,14 @@ def huggingface_llm_config():
|
||||
os.environ.pop("HUGGINGFACE_ACCESS_TOKEN")
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def huggingface_endpoint_config():
|
||||
os.environ["HUGGINGFACE_ACCESS_TOKEN"] = "test_access_token"
|
||||
config = BaseLlmConfig(endpoint="https://api-inference.huggingface.co/models/gpt2", model_kwargs={"device": "cpu"})
|
||||
yield config
|
||||
os.environ.pop("HUGGINGFACE_ACCESS_TOKEN")
|
||||
|
||||
|
||||
def test_init_raises_value_error_without_api_key(mocker):
|
||||
mocker.patch.dict(os.environ, clear=True)
|
||||
with pytest.raises(ValueError):
|
||||
@@ -61,3 +69,14 @@ def test_hugging_face_mock(huggingface_llm_config, mocker):
|
||||
|
||||
assert answer == "Test answer"
|
||||
mock_llm_instance.assert_called_once_with("Test query")
|
||||
|
||||
|
||||
def test_custom_endpoint(huggingface_endpoint_config, mocker):
|
||||
mock_llm_instance = mocker.Mock(return_value="Test answer")
|
||||
mocker.patch("embedchain.llm.huggingface.HuggingFaceEndpoint", return_value=mock_llm_instance)
|
||||
|
||||
llm = HuggingFaceLlm(huggingface_endpoint_config)
|
||||
answer = llm.get_llm_model_answer("Test query")
|
||||
|
||||
assert answer == "Test answer"
|
||||
mock_llm_instance.assert_called_once_with("Test query")
|
||||
|
||||
Reference in New Issue
Block a user