[Feature] Add support for running huggingface models locally (#1287)

This commit is contained in:
Deshraj Yadav
2024-02-27 15:05:17 -08:00
committed by GitHub
parent 752f638cfc
commit 56bf33ab7f
5 changed files with 95 additions and 46 deletions

View File

@@ -5,6 +5,7 @@ from typing import Optional
from langchain_community.llms.huggingface_endpoint import HuggingFaceEndpoint
from langchain_community.llms.huggingface_hub import HuggingFaceHub
from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline
from embedchain.config import BaseLlmConfig
from embedchain.helpers.json_serializable import register_deserializable
@@ -34,12 +35,15 @@ class HuggingFaceLlm(BaseLlm):
@staticmethod
def _get_answer(prompt: str, config: BaseLlmConfig) -> str:
if config.model:
# If the user wants to run the model locally, they can do so by setting the `local` flag to True
if config.model and config.local:
return HuggingFaceLlm._from_pipeline(prompt=prompt, config=config)
elif config.model:
return HuggingFaceLlm._from_model(prompt=prompt, config=config)
elif config.endpoint:
return HuggingFaceLlm._from_endpoint(prompt=prompt, config=config)
else:
raise ValueError("Either `model` or `endpoint` must be set")
raise ValueError("Either `model` or `endpoint` must be set in config")
@staticmethod
def _from_model(prompt: str, config: BaseLlmConfig) -> str:
@@ -53,15 +57,14 @@ class HuggingFaceLlm(BaseLlm):
else:
raise ValueError("`top_p` must be > 0.0 and < 1.0")
model = config.model or "google/flan-t5-xxl"
model = config.model
logging.info(f"Using HuggingFaceHub with model {model}")
llm = HuggingFaceHub(
huggingfacehub_api_token=os.environ["HUGGINGFACE_ACCESS_TOKEN"],
repo_id=model,
model_kwargs=model_kwargs,
)
return llm(prompt)
return llm.invoke(prompt)
@staticmethod
def _from_endpoint(prompt: str, config: BaseLlmConfig) -> str:
@@ -71,4 +74,23 @@ class HuggingFaceLlm(BaseLlm):
task="text-generation",
model_kwargs=config.model_kwargs,
)
return llm(prompt)
return llm.invoke(prompt)
@staticmethod
def _from_pipeline(prompt: str, config: BaseLlmConfig) -> str:
model_kwargs = {
"temperature": config.temperature or 0.1,
"max_new_tokens": config.max_tokens,
}
if 0.0 < config.top_p < 1.0:
model_kwargs["top_p"] = config.top_p
else:
raise ValueError("`top_p` must be > 0.0 and < 1.0")
llm = HuggingFacePipeline.from_model_id(
model_id=config.model,
task="text-generation",
pipeline_kwargs=model_kwargs,
)
return llm.invoke(prompt)