diff --git a/docs/components/llms.mdx b/docs/components/llms.mdx
index 8cf90b74..2c6c78cf 100644
--- a/docs/components/llms.mdx
+++ b/docs/components/llms.mdx
@@ -451,7 +451,15 @@ pip install --upgrade 'embedchain[huggingface-hub]'
First, set `HUGGINGFACE_ACCESS_TOKEN` in environment variable which you can obtain from [their platform](https://huggingface.co/settings/tokens).
-Once you have the token, load the app using the config yaml file:
+You can load the LLMs from Hugging Face using three ways:
+
+- [Hugging Face Hub](#hugging-face-hub)
+- [Hugging Face Local Pipelines](#hugging-face-local-pipelines)
+- [Hugging Face Inference Endpoint](#hugging-face-inference-endpoint)
+
+### Hugging Face Hub
+
+To load the model from Hugging Face Hub, use the following code:
@@ -461,24 +469,49 @@ from embedchain import App
os.environ["HUGGINGFACE_ACCESS_TOKEN"] = "xxx"
-# load llm configuration from config.yaml file
-app = App.from_config(config_path="config.yaml")
-```
+config = {
+ "app": {"config": {"id": "my-app"}},
+ "llm": {
+ "provider": "huggingface",
+ "config": {
+ "model": "bigscience/bloom-1b7",
+ "top_p": 0.5,
+ "max_length": 200,
+ "temperature": 0.1,
+ },
+ },
+}
-```yaml config.yaml
-llm:
- provider: huggingface
- config:
- model: 'google/flan-t5-xxl'
- temperature: 0.5
- max_tokens: 1000
- top_p: 0.5
- stream: false
+app = App.from_config(config=config)
```
-### Custom Endpoints
+### Hugging Face Local Pipelines
+If you want to load the locally downloaded model from Hugging Face, you can do so by following the code provided below:
+
+
+```python main.py
+from embedchain import App
+
+config = {
+ "app": {"config": {"id": "my-app"}},
+ "llm": {
+ "provider": "huggingface",
+ "config": {
+ "model": "Trendyol/Trendyol-LLM-7b-chat-v0.1",
+ "local": True, # Necessary if you want to run model locally
+ "top_p": 0.5,
+ "max_tokens": 1000,
+ "temperature": 0.1,
+ },
+ }
+}
+app = App.from_config(config=config)
+```
+
+
+### Hugging Face Inference Endpoint
You can also use [Hugging Face Inference Endpoints](https://huggingface.co/docs/inference-endpoints/index#-inference-endpoints) to access custom endpoints. First, set the `HUGGINGFACE_ACCESS_TOKEN` as above.
@@ -487,35 +520,23 @@ Then, load the app using the config yaml file:
```python main.py
-import os
from embedchain import App
-os.environ["HUGGINGFACE_ACCESS_TOKEN"] = "xxx"
+config = {
+ "app": {"config": {"id": "my-app"}},
+ "llm": {
+ "provider": "huggingface",
+ "config": {
+ "endpoint": "https://api-inference.huggingface.co/models/gpt2",
+ "model_params": {"temprature": 0.1, "max_new_tokens": 100}
+ },
+ },
+}
+app = App.from_config(config=config)
-# load llm configuration from config.yaml file
-app = App.from_config(config_path="config.yaml")
-```
-
-```yaml config.yaml
-llm:
- provider: huggingface
- config:
- endpoint: https://api-inference.huggingface.co/models/gpt2 # replace with your personal endpoint
```
-If your endpoint requires additional parameters, you can pass them in the `model_kwargs` field:
-
-```
-llm:
- provider: huggingface
- config:
- endpoint:
- model_kwargs:
- max_new_tokens: 100
- temperature: 0.5
-```
-
Currently only supports `text-generation` and `text2text-generation` for now [[ref](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html?highlight=huggingfaceendpoint#)].
See langchain's [hugging face endpoint](https://python.langchain.com/docs/integrations/chat/huggingface#huggingfaceendpoint) for more information.
diff --git a/embedchain/config/llm/base.py b/embedchain/config/llm/base.py
index 3059aef0..fb6491d1 100644
--- a/embedchain/config/llm/base.py
+++ b/embedchain/config/llm/base.py
@@ -95,6 +95,7 @@ class BaseLlmConfig(BaseConfig):
api_key: Optional[str] = None,
endpoint: Optional[str] = None,
model_kwargs: Optional[dict[str, Any]] = None,
+ local: Optional[bool] = False,
):
"""
Initializes a configuration class instance for the LLM.
@@ -138,6 +139,8 @@ class BaseLlmConfig(BaseConfig):
:type callbacks: Optional[list], optional
:param query_type: The type of query to use, defaults to None
:type query_type: Optional[str], optional
+ :param local: If True, the model will be run locally, defaults to False (for huggingface provider)
+ :type local: Optional[bool], optional
:raises ValueError: If the template is not valid as template should
contain $context and $query (and optionally $history)
:raises ValueError: Stream is not boolean
@@ -165,6 +168,7 @@ class BaseLlmConfig(BaseConfig):
self.api_key = api_key
self.endpoint = endpoint
self.model_kwargs = model_kwargs
+ self.local = local
if isinstance(prompt, str):
prompt = Template(prompt)
diff --git a/embedchain/llm/huggingface.py b/embedchain/llm/huggingface.py
index a8cfe2da..8cf0f8b5 100644
--- a/embedchain/llm/huggingface.py
+++ b/embedchain/llm/huggingface.py
@@ -5,6 +5,7 @@ from typing import Optional
from langchain_community.llms.huggingface_endpoint import HuggingFaceEndpoint
from langchain_community.llms.huggingface_hub import HuggingFaceHub
+from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline
from embedchain.config import BaseLlmConfig
from embedchain.helpers.json_serializable import register_deserializable
@@ -34,12 +35,15 @@ class HuggingFaceLlm(BaseLlm):
@staticmethod
def _get_answer(prompt: str, config: BaseLlmConfig) -> str:
- if config.model:
+ # If the user wants to run the model locally, they can do so by setting the `local` flag to True
+ if config.model and config.local:
+ return HuggingFaceLlm._from_pipeline(prompt=prompt, config=config)
+ elif config.model:
return HuggingFaceLlm._from_model(prompt=prompt, config=config)
elif config.endpoint:
return HuggingFaceLlm._from_endpoint(prompt=prompt, config=config)
else:
- raise ValueError("Either `model` or `endpoint` must be set")
+ raise ValueError("Either `model` or `endpoint` must be set in config")
@staticmethod
def _from_model(prompt: str, config: BaseLlmConfig) -> str:
@@ -53,15 +57,14 @@ class HuggingFaceLlm(BaseLlm):
else:
raise ValueError("`top_p` must be > 0.0 and < 1.0")
- model = config.model or "google/flan-t5-xxl"
+ model = config.model
logging.info(f"Using HuggingFaceHub with model {model}")
llm = HuggingFaceHub(
huggingfacehub_api_token=os.environ["HUGGINGFACE_ACCESS_TOKEN"],
repo_id=model,
model_kwargs=model_kwargs,
)
-
- return llm(prompt)
+ return llm.invoke(prompt)
@staticmethod
def _from_endpoint(prompt: str, config: BaseLlmConfig) -> str:
@@ -71,4 +74,23 @@ class HuggingFaceLlm(BaseLlm):
task="text-generation",
model_kwargs=config.model_kwargs,
)
- return llm(prompt)
+ return llm.invoke(prompt)
+
+ @staticmethod
+ def _from_pipeline(prompt: str, config: BaseLlmConfig) -> str:
+ model_kwargs = {
+ "temperature": config.temperature or 0.1,
+ "max_new_tokens": config.max_tokens,
+ }
+
+ if 0.0 < config.top_p < 1.0:
+ model_kwargs["top_p"] = config.top_p
+ else:
+ raise ValueError("`top_p` must be > 0.0 and < 1.0")
+
+ llm = HuggingFacePipeline.from_model_id(
+ model_id=config.model,
+ task="text-generation",
+ pipeline_kwargs=model_kwargs,
+ )
+ return llm.invoke(prompt)
diff --git a/embedchain/utils/misc.py b/embedchain/utils/misc.py
index ce7b5115..ead5eef8 100644
--- a/embedchain/utils/misc.py
+++ b/embedchain/utils/misc.py
@@ -425,6 +425,7 @@ def validate_config(config_data):
Optional("api_key"): str,
Optional("endpoint"): str,
Optional("model_kwargs"): dict,
+ Optional("local"): bool,
},
},
Optional("vectordb"): {
diff --git a/tests/llm/test_huggingface.py b/tests/llm/test_huggingface.py
index 45a70244..754317f6 100644
--- a/tests/llm/test_huggingface.py
+++ b/tests/llm/test_huggingface.py
@@ -62,18 +62,19 @@ def test_get_llm_model_answer(huggingface_llm_config, mocker):
def test_hugging_face_mock(huggingface_llm_config, mocker):
mock_llm_instance = mocker.Mock(return_value="Test answer")
- mocker.patch("embedchain.llm.huggingface.HuggingFaceHub", return_value=mock_llm_instance)
+ mock_hf_hub = mocker.patch("embedchain.llm.huggingface.HuggingFaceHub")
+ mock_hf_hub.return_value.invoke = mock_llm_instance
llm = HuggingFaceLlm(huggingface_llm_config)
answer = llm.get_llm_model_answer("Test query")
-
assert answer == "Test answer"
mock_llm_instance.assert_called_once_with("Test query")
def test_custom_endpoint(huggingface_endpoint_config, mocker):
mock_llm_instance = mocker.Mock(return_value="Test answer")
- mocker.patch("embedchain.llm.huggingface.HuggingFaceEndpoint", return_value=mock_llm_instance)
+ mock_hf_endpoint = mocker.patch("embedchain.llm.huggingface.HuggingFaceEndpoint")
+ mock_hf_endpoint.return_value.invoke = mock_llm_instance
llm = HuggingFaceLlm(huggingface_endpoint_config)
answer = llm.get_llm_model_answer("Test query")