[Feature] Add support for running huggingface models locally (#1287)

This commit is contained in:
Deshraj Yadav
2024-02-27 15:05:17 -08:00
committed by GitHub
parent 752f638cfc
commit 56bf33ab7f
5 changed files with 95 additions and 46 deletions

View File

@@ -95,6 +95,7 @@ class BaseLlmConfig(BaseConfig):
api_key: Optional[str] = None,
endpoint: Optional[str] = None,
model_kwargs: Optional[dict[str, Any]] = None,
local: Optional[bool] = False,
):
"""
Initializes a configuration class instance for the LLM.
@@ -138,6 +139,8 @@ class BaseLlmConfig(BaseConfig):
:type callbacks: Optional[list], optional
:param query_type: The type of query to use, defaults to None
:type query_type: Optional[str], optional
:param local: If True, the model will be run locally, defaults to False (for huggingface provider)
:type local: Optional[bool], optional
:raises ValueError: If the template is not valid as template should
contain $context and $query (and optionally $history)
:raises ValueError: Stream is not boolean
@@ -165,6 +168,7 @@ class BaseLlmConfig(BaseConfig):
self.api_key = api_key
self.endpoint = endpoint
self.model_kwargs = model_kwargs
self.local = local
if isinstance(prompt, str):
prompt = Template(prompt)

View File

@@ -5,6 +5,7 @@ from typing import Optional
from langchain_community.llms.huggingface_endpoint import HuggingFaceEndpoint
from langchain_community.llms.huggingface_hub import HuggingFaceHub
from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline
from embedchain.config import BaseLlmConfig
from embedchain.helpers.json_serializable import register_deserializable
@@ -34,12 +35,15 @@ class HuggingFaceLlm(BaseLlm):
@staticmethod
def _get_answer(prompt: str, config: BaseLlmConfig) -> str:
if config.model:
# If the user wants to run the model locally, they can do so by setting the `local` flag to True
if config.model and config.local:
return HuggingFaceLlm._from_pipeline(prompt=prompt, config=config)
elif config.model:
return HuggingFaceLlm._from_model(prompt=prompt, config=config)
elif config.endpoint:
return HuggingFaceLlm._from_endpoint(prompt=prompt, config=config)
else:
raise ValueError("Either `model` or `endpoint` must be set")
raise ValueError("Either `model` or `endpoint` must be set in config")
@staticmethod
def _from_model(prompt: str, config: BaseLlmConfig) -> str:
@@ -53,15 +57,14 @@ class HuggingFaceLlm(BaseLlm):
else:
raise ValueError("`top_p` must be > 0.0 and < 1.0")
model = config.model or "google/flan-t5-xxl"
model = config.model
logging.info(f"Using HuggingFaceHub with model {model}")
llm = HuggingFaceHub(
huggingfacehub_api_token=os.environ["HUGGINGFACE_ACCESS_TOKEN"],
repo_id=model,
model_kwargs=model_kwargs,
)
return llm(prompt)
return llm.invoke(prompt)
@staticmethod
def _from_endpoint(prompt: str, config: BaseLlmConfig) -> str:
@@ -71,4 +74,23 @@ class HuggingFaceLlm(BaseLlm):
task="text-generation",
model_kwargs=config.model_kwargs,
)
return llm(prompt)
return llm.invoke(prompt)
@staticmethod
def _from_pipeline(prompt: str, config: BaseLlmConfig) -> str:
model_kwargs = {
"temperature": config.temperature or 0.1,
"max_new_tokens": config.max_tokens,
}
if 0.0 < config.top_p < 1.0:
model_kwargs["top_p"] = config.top_p
else:
raise ValueError("`top_p` must be > 0.0 and < 1.0")
llm = HuggingFacePipeline.from_model_id(
model_id=config.model,
task="text-generation",
pipeline_kwargs=model_kwargs,
)
return llm.invoke(prompt)

View File

@@ -425,6 +425,7 @@ def validate_config(config_data):
Optional("api_key"): str,
Optional("endpoint"): str,
Optional("model_kwargs"): dict,
Optional("local"): bool,
},
},
Optional("vectordb"): {