[Misc] Lint code and fix code smells (#1871)

This commit is contained in:
Deshraj Yadav
2024-09-16 17:39:54 -07:00
committed by GitHub
parent 0a78cb9f7a
commit 55c54beeab
57 changed files with 1178 additions and 1357 deletions

View File

@@ -10,7 +10,11 @@ from mem0.memory.setup import setup_config
from mem0.memory.telemetry import capture_client_event
logger = logging.getLogger(__name__)
warnings.filterwarnings('always', category=DeprecationWarning, message="The 'session_id' parameter is deprecated. User 'run_id' instead.")
warnings.filterwarnings(
"always",
category=DeprecationWarning,
message="The 'session_id' parameter is deprecated. User 'run_id' instead.",
)
# Setup user config
setup_config()
@@ -82,14 +86,10 @@ class MemoryClient:
response = self.client.get("/v1/memories/", params={"user_id": "test"})
response.raise_for_status()
except httpx.HTTPStatusError:
raise ValueError(
"Invalid API Key. Please get a valid API Key from https://app.mem0.ai"
)
raise ValueError("Invalid API Key. Please get a valid API Key from https://app.mem0.ai")
@api_error_handler
def add(
self, messages: Union[str, List[Dict[str, str]]], **kwargs
) -> Dict[str, Any]:
def add(self, messages: Union[str, List[Dict[str, str]]], **kwargs) -> Dict[str, Any]:
"""Add a new memory.
Args:
@@ -253,9 +253,7 @@ class MemoryClient:
"""Delete all users, agents, or sessions."""
entities = self.users()
for entity in entities["results"]:
response = self.client.delete(
f"/v1/entities/{entity['type']}/{entity['id']}/"
)
response = self.client.delete(f"/v1/entities/{entity['type']}/{entity['id']}/")
response.raise_for_status()
capture_client_event("client.delete_users", self)
@@ -312,7 +310,7 @@ class MemoryClient:
"The 'session_id' parameter is deprecated and will be removed in version 0.1.20. "
"Use 'run_id' instead.",
DeprecationWarning,
stacklevel=2
stacklevel=2,
)
kwargs["run_id"] = kwargs.pop("session_id")
@@ -335,7 +333,7 @@ class MemoryClient:
"The 'session_id' parameter is deprecated and will be removed in version 0.1.20. "
"Use 'run_id' instead.",
DeprecationWarning,
stacklevel=2
stacklevel=2,
)
kwargs["run_id"] = kwargs.pop("session_id")

View File

@@ -17,18 +17,10 @@ class MemoryItem(BaseModel):
) # TODO After prompt changes from platform, update this
hash: Optional[str] = Field(None, description="The hash of the memory")
# The metadata value can be anything and not just string. Fix it
metadata: Optional[Dict[str, Any]] = Field(
None, description="Additional metadata for the text data"
)
score: Optional[float] = Field(
None, description="The score associated with the text data"
)
created_at: Optional[str] = Field(
None, description="The timestamp when the memory was created"
)
updated_at: Optional[str] = Field(
None, description="The timestamp when the memory was updated"
)
metadata: Optional[Dict[str, Any]] = Field(None, description="Additional metadata for the text data")
score: Optional[float] = Field(None, description="The score associated with the text data")
created_at: Optional[str] = Field(None, description="The timestamp when the memory was created")
updated_at: Optional[str] = Field(None, description="The timestamp when the memory was updated")
class MemoryConfig(BaseModel):
@@ -60,7 +52,7 @@ class MemoryConfig(BaseModel):
description="Custom prompt for the memory",
default=None,
)
class AzureConfig(BaseModel):
"""
@@ -73,7 +65,10 @@ class AzureConfig(BaseModel):
api_version (str): The version of the Azure API being used.
"""
api_key: str = Field(description="The API key used for authenticating with the Azure service.", default=None)
azure_deployment : str = Field(description="The name of the Azure deployment.", default=None)
azure_endpoint : str = Field(description="The endpoint URL for the Azure service.", default=None)
api_version : str = Field(description="The version of the Azure API being used.", default=None)
api_key: str = Field(
description="The API key used for authenticating with the Azure service.",
default=None,
)
azure_deployment: str = Field(description="The name of the Azure deployment.", default=None)
azure_endpoint: str = Field(description="The endpoint URL for the Azure service.", default=None)
api_version: str = Field(description="The version of the Azure API being used.", default=None)

View File

@@ -60,6 +60,6 @@ class BaseEmbedderConfig(ABC):
# Huggingface specific
self.model_kwargs = model_kwargs or {}
# AzureOpenAI specific
self.azure_kwargs = AzureConfig(**azure_kwargs) or {}

View File

@@ -59,6 +59,7 @@ You should detect the language of the user input and record the facts in the sam
If you do not find anything relevant facts, user memories, and preferences in the below conversation, you can return an empty list corresponding to the "facts" key.
"""
def get_update_memory_messages(retrieved_old_memory_dict, response_content):
return f"""You are a smart memory manager which controls the memory of a system.
You can perform four operations: (1) add into the memory, (2) update the memory, (3) delete from the memory, and (4) no change.

View File

@@ -13,9 +13,7 @@ class ChromaDbConfig(BaseModel):
Client: ClassVar[type] = Client
collection_name: str = Field("mem0", description="Default name for the collection")
client: Optional[Client] = Field(
None, description="Existing ChromaDB client instance"
)
client: Optional[Client] = Field(None, description="Existing ChromaDB client instance")
path: Optional[str] = Field(None, description="Path to the database directory")
host: Optional[str] = Field(None, description="Database connection remote host")
port: Optional[int] = Field(None, description="Database connection remote port")

View File

@@ -1,22 +1,24 @@
from enum import Enum
from typing import Dict, Any
from pydantic import BaseModel, model_validator, Field
from typing import Any, Dict
from pydantic import BaseModel, Field, model_validator
class MetricType(str, Enum):
"""
Metric Constant for milvus/ zilliz server.
"""
def __str__(self) -> str:
return str(self.value)
L2 = "L2"
IP = "IP"
COSINE = "COSINE"
HAMMING = "HAMMING"
JACCARD = "JACCARD"
IP = "IP"
COSINE = "COSINE"
HAMMING = "HAMMING"
JACCARD = "JACCARD"
class MilvusDBConfig(BaseModel):
url: str = Field("http://localhost:19530", description="Full URL for Milvus/Zilliz server")
token: str = Field(None, description="Token for Zilliz server / local setup defaults to None.")
@@ -38,4 +40,4 @@ class MilvusDBConfig(BaseModel):
model_config = {
"arbitrary_types_allowed": True,
}
}

View File

@@ -4,12 +4,9 @@ from pydantic import BaseModel, Field, model_validator
class PGVectorConfig(BaseModel):
dbname: str = Field("postgres", description="Default name for the database")
collection_name: str = Field("mem0", description="Default name for the collection")
embedding_model_dims: Optional[int] = Field(
1536, description="Dimensions of the embedding model"
)
embedding_model_dims: Optional[int] = Field(1536, description="Dimensions of the embedding model")
user: Optional[str] = Field(None, description="Database user")
password: Optional[str] = Field(None, description="Database password")
host: Optional[str] = Field(None, description="Database host. Default is localhost")

View File

@@ -9,17 +9,11 @@ class QdrantConfig(BaseModel):
QdrantClient: ClassVar[type] = QdrantClient
collection_name: str = Field("mem0", description="Name of the collection")
embedding_model_dims: Optional[int] = Field(
1536, description="Dimensions of the embedding model"
)
client: Optional[QdrantClient] = Field(
None, description="Existing Qdrant client instance"
)
embedding_model_dims: Optional[int] = Field(1536, description="Dimensions of the embedding model")
client: Optional[QdrantClient] = Field(None, description="Existing Qdrant client instance")
host: Optional[str] = Field(None, description="Host address for Qdrant server")
port: Optional[int] = Field(None, description="Port for Qdrant server")
path: Optional[str] = Field(
"/tmp/qdrant", description="Path for local Qdrant database"
)
path: Optional[str] = Field("/tmp/qdrant", description="Path for local Qdrant database")
url: Optional[str] = Field(None, description="Full URL for Qdrant server")
api_key: Optional[str] = Field(None, description="API key for Qdrant server")
on_disk: Optional[bool] = Field(False, description="Enables persistent storage")
@@ -35,9 +29,7 @@ class QdrantConfig(BaseModel):
values.get("api_key"),
)
if not path and not (host and port) and not (url and api_key):
raise ValueError(
"Either 'host' and 'port' or 'url' and 'api_key' or 'path' must be provided."
)
raise ValueError("Either 'host' and 'port' or 'url' and 'api_key' or 'path' must be provided.")
return values
@model_validator(mode="before")

View File

@@ -15,14 +15,14 @@ class AzureOpenAIEmbedding(EmbeddingBase):
azure_deployment = self.config.azure_kwargs.azure_deployment or os.getenv("EMBEDDING_AZURE_DEPLOYMENT")
azure_endpoint = self.config.azure_kwargs.azure_endpoint or os.getenv("EMBEDDING_AZURE_ENDPOINT")
api_version = self.config.azure_kwargs.api_version or os.getenv("EMBEDDING_AZURE_API_VERSION")
self.client = AzureOpenAI(
azure_deployment=azure_deployment,
azure_deployment=azure_deployment,
azure_endpoint=azure_endpoint,
api_version=api_version,
api_key=api_key,
http_client=self.config.http_client
)
http_client=self.config.http_client,
)
def embed(self, text):
"""
@@ -35,8 +35,4 @@ class AzureOpenAIEmbedding(EmbeddingBase):
list: The embedding vector.
"""
text = text.replace("\n", " ")
return (
self.client.embeddings.create(input=[text], model=self.config.model)
.data[0]
.embedding
)
return self.client.embeddings.create(input=[text], model=self.config.model).data[0].embedding

View File

@@ -8,9 +8,7 @@ class EmbedderConfig(BaseModel):
description="Provider of the embedding model (e.g., 'ollama', 'openai')",
default="openai",
)
config: Optional[dict] = Field(
description="Configuration for the specific embedding model", default={}
)
config: Optional[dict] = Field(description="Configuration for the specific embedding model", default={})
@field_validator("config")
def validate_config(cls, v, values):

View File

@@ -9,7 +9,7 @@ try:
from ollama import Client
except ImportError:
user_input = input("The 'ollama' library is required. Install it now? [y/N]: ")
if user_input.lower() == 'y':
if user_input.lower() == "y":
try:
subprocess.check_call([sys.executable, "-m", "pip", "install", "ollama"])
from ollama import Client

View File

@@ -29,8 +29,4 @@ class OpenAIEmbedding(EmbeddingBase):
list: The embedding vector.
"""
text = text.replace("\n", " ")
return (
self.client.embeddings.create(input=[text], model=self.config.model)
.data[0]
.embedding
)
return self.client.embeddings.create(input=[text], model=self.config.model).data[0].embedding

View File

@@ -6,6 +6,7 @@ from vertexai.language_models import TextEmbeddingModel
from mem0.configs.embeddings.base import BaseEmbedderConfig
from mem0.embeddings.base import EmbeddingBase
class VertexAI(EmbeddingBase):
def __init__(self, config: Optional[BaseEmbedderConfig] = None):
super().__init__(config)
@@ -34,6 +35,6 @@ class VertexAI(EmbeddingBase):
Returns:
list: The embedding vector.
"""
embeddings = self.model.get_embeddings(texts=[text], output_dimensionality= self.config.embedding_dims)
embeddings = self.model.get_embeddings(texts=[text], output_dimensionality=self.config.embedding_dims)
return embeddings[0].values

View File

@@ -18,28 +18,16 @@ class Neo4jConfig(BaseModel):
values.get("password"),
)
if not url or not username or not password:
raise ValueError(
"Please provide 'url', 'username' and 'password'."
)
raise ValueError("Please provide 'url', 'username' and 'password'.")
return values
class GraphStoreConfig(BaseModel):
provider: str = Field(
description="Provider of the data store (e.g., 'neo4j')",
default="neo4j"
)
config: Neo4jConfig = Field(
description="Configuration for the specific data store",
default=None
)
llm: Optional[LlmConfig] = Field(
description="LLM configuration for querying the graph store",
default=None
)
provider: str = Field(description="Provider of the data store (e.g., 'neo4j')", default="neo4j")
config: Neo4jConfig = Field(description="Configuration for the specific data store", default=None)
llm: Optional[LlmConfig] = Field(description="LLM configuration for querying the graph store", default=None)
custom_prompt: Optional[str] = Field(
description="Custom prompt to fetch entities from the given text",
default=None
description="Custom prompt to fetch entities from the given text", default=None
)
@field_validator("config")
@@ -49,4 +37,3 @@ class GraphStoreConfig(BaseModel):
return Neo4jConfig(**v.model_dump())
else:
raise ValueError(f"Unsupported graph store provider: {provider}")

View File

@@ -1,4 +1,3 @@
UPDATE_MEMORY_TOOL_GRAPH = {
"type": "function",
"function": {
@@ -9,21 +8,21 @@ UPDATE_MEMORY_TOOL_GRAPH = {
"properties": {
"source": {
"type": "string",
"description": "The identifier of the source node in the relationship to be updated. This should match an existing node in the graph."
"description": "The identifier of the source node in the relationship to be updated. This should match an existing node in the graph.",
},
"destination": {
"type": "string",
"description": "The identifier of the destination node in the relationship to be updated. This should match an existing node in the graph."
"description": "The identifier of the destination node in the relationship to be updated. This should match an existing node in the graph.",
},
"relationship": {
"type": "string",
"description": "The new or updated relationship between the source and destination nodes. This should be a concise, clear description of how the two nodes are connected."
}
"description": "The new or updated relationship between the source and destination nodes. This should be a concise, clear description of how the two nodes are connected.",
},
},
"required": ["source", "destination", "relationship"],
"additionalProperties": False
}
}
"additionalProperties": False,
},
},
}
ADD_MEMORY_TOOL_GRAPH = {
@@ -36,29 +35,35 @@ ADD_MEMORY_TOOL_GRAPH = {
"properties": {
"source": {
"type": "string",
"description": "The identifier of the source node in the new relationship. This can be an existing node or a new node to be created."
"description": "The identifier of the source node in the new relationship. This can be an existing node or a new node to be created.",
},
"destination": {
"type": "string",
"description": "The identifier of the destination node in the new relationship. This can be an existing node or a new node to be created."
"description": "The identifier of the destination node in the new relationship. This can be an existing node or a new node to be created.",
},
"relationship": {
"type": "string",
"description": "The type of relationship between the source and destination nodes. This should be a concise, clear description of how the two nodes are connected."
"description": "The type of relationship between the source and destination nodes. This should be a concise, clear description of how the two nodes are connected.",
},
"source_type": {
"type": "string",
"description": "The type or category of the source node. This helps in classifying and organizing nodes in the graph."
"description": "The type or category of the source node. This helps in classifying and organizing nodes in the graph.",
},
"destination_type": {
"type": "string",
"description": "The type or category of the destination node. This helps in classifying and organizing nodes in the graph."
}
"description": "The type or category of the destination node. This helps in classifying and organizing nodes in the graph.",
},
},
"required": ["source", "destination", "relationship", "source_type", "destination_type"],
"additionalProperties": False
}
}
"required": [
"source",
"destination",
"relationship",
"source_type",
"destination_type",
],
"additionalProperties": False,
},
},
}
@@ -71,9 +76,9 @@ NOOP_TOOL = {
"type": "object",
"properties": {},
"required": [],
"additionalProperties": False
}
}
"additionalProperties": False,
},
},
}
@@ -94,17 +99,23 @@ ADD_MESSAGE_TOOL = {
"source_type": {"type": "string"},
"relation": {"type": "string"},
"destination_node": {"type": "string"},
"destination_type": {"type": "string"}
"destination_type": {"type": "string"},
},
"required": ["source_node", "source_type", "relation", "destination_node", "destination_type"],
"additionalProperties": False
}
"required": [
"source_node",
"source_type",
"relation",
"destination_node",
"destination_type",
],
"additionalProperties": False,
},
}
},
"required": ["entities"],
"additionalProperties": False
}
}
"additionalProperties": False,
},
},
}
@@ -118,23 +129,19 @@ SEARCH_TOOL = {
"properties": {
"nodes": {
"type": "array",
"items": {
"type": "string"
},
"description": "List of nodes to search for."
"items": {"type": "string"},
"description": "List of nodes to search for.",
},
"relations": {
"type": "array",
"items": {
"type": "string"
},
"description": "List of relations to search for."
}
"items": {"type": "string"},
"description": "List of relations to search for.",
},
},
"required": ["nodes", "relations"],
"additionalProperties": False
}
}
"additionalProperties": False,
},
},
}
UPDATE_MEMORY_STRUCT_TOOL_GRAPH = {
@@ -148,21 +155,21 @@ UPDATE_MEMORY_STRUCT_TOOL_GRAPH = {
"properties": {
"source": {
"type": "string",
"description": "The identifier of the source node in the relationship to be updated. This should match an existing node in the graph."
"description": "The identifier of the source node in the relationship to be updated. This should match an existing node in the graph.",
},
"destination": {
"type": "string",
"description": "The identifier of the destination node in the relationship to be updated. This should match an existing node in the graph."
"description": "The identifier of the destination node in the relationship to be updated. This should match an existing node in the graph.",
},
"relationship": {
"type": "string",
"description": "The new or updated relationship between the source and destination nodes. This should be a concise, clear description of how the two nodes are connected."
}
"description": "The new or updated relationship between the source and destination nodes. This should be a concise, clear description of how the two nodes are connected.",
},
},
"required": ["source", "destination", "relationship"],
"additionalProperties": False
}
}
"additionalProperties": False,
},
},
}
ADD_MEMORY_STRUCT_TOOL_GRAPH = {
@@ -176,29 +183,35 @@ ADD_MEMORY_STRUCT_TOOL_GRAPH = {
"properties": {
"source": {
"type": "string",
"description": "The identifier of the source node in the new relationship. This can be an existing node or a new node to be created."
"description": "The identifier of the source node in the new relationship. This can be an existing node or a new node to be created.",
},
"destination": {
"type": "string",
"description": "The identifier of the destination node in the new relationship. This can be an existing node or a new node to be created."
"description": "The identifier of the destination node in the new relationship. This can be an existing node or a new node to be created.",
},
"relationship": {
"type": "string",
"description": "The type of relationship between the source and destination nodes. This should be a concise, clear description of how the two nodes are connected."
"description": "The type of relationship between the source and destination nodes. This should be a concise, clear description of how the two nodes are connected.",
},
"source_type": {
"type": "string",
"description": "The type or category of the source node. This helps in classifying and organizing nodes in the graph."
"description": "The type or category of the source node. This helps in classifying and organizing nodes in the graph.",
},
"destination_type": {
"type": "string",
"description": "The type or category of the destination node. This helps in classifying and organizing nodes in the graph."
}
"description": "The type or category of the destination node. This helps in classifying and organizing nodes in the graph.",
},
},
"required": ["source", "destination", "relationship", "source_type", "destination_type"],
"additionalProperties": False
}
}
"required": [
"source",
"destination",
"relationship",
"source_type",
"destination_type",
],
"additionalProperties": False,
},
},
}
@@ -212,9 +225,9 @@ NOOP_STRUCT_TOOL = {
"type": "object",
"properties": {},
"required": [],
"additionalProperties": False
}
}
"additionalProperties": False,
},
},
}
@@ -236,17 +249,23 @@ ADD_MESSAGE_STRUCT_TOOL = {
"source_type": {"type": "string"},
"relation": {"type": "string"},
"destination_node": {"type": "string"},
"destination_type": {"type": "string"}
"destination_type": {"type": "string"},
},
"required": ["source_node", "source_type", "relation", "destination_node", "destination_type"],
"additionalProperties": False
}
"required": [
"source_node",
"source_type",
"relation",
"destination_node",
"destination_type",
],
"additionalProperties": False,
},
}
},
"required": ["entities"],
"additionalProperties": False
}
}
"additionalProperties": False,
},
},
}
@@ -261,21 +280,17 @@ SEARCH_STRUCT_TOOL = {
"properties": {
"nodes": {
"type": "array",
"items": {
"type": "string"
},
"description": "List of nodes to search for."
"items": {"type": "string"},
"description": "List of nodes to search for.",
},
"relations": {
"type": "array",
"items": {
"type": "string"
},
"description": "List of relations to search for."
}
"items": {"type": "string"},
"description": "List of relations to search for.",
},
},
"required": ["nodes", "relations"],
"additionalProperties": False
}
}
"additionalProperties": False,
},
},
}

View File

@@ -1,4 +1,3 @@
UPDATE_GRAPH_PROMPT = """
You are an AI expert specializing in graph memory management and optimization. Your task is to analyze existing graph memories alongside new information, and update the relationships in the memory list to ensure the most accurate, current, and coherent representation of knowledge.
@@ -55,10 +54,10 @@ Strive for a coherent, easily understandable knowledge graph by maintaining cons
Adhere strictly to these guidelines to ensure high-quality knowledge graph extraction."""
def get_update_memory_prompt(existing_memories, memory, template):
return template.format(existing_memories=existing_memories, memory=memory)
def get_update_memory_messages(existing_memories, memory):
return [
{

View File

@@ -4,7 +4,7 @@ from typing import Dict, List, Optional
try:
import anthropic
except ImportError:
raise ImportError("The 'anthropic' library is required. Please install it using 'pip install anthropic'.")
raise ImportError("The 'anthropic' library is required. Please install it using 'pip install anthropic'.")
from mem0.configs.llms.base import BaseLlmConfig
from mem0.llms.base import LLMBase
@@ -43,8 +43,8 @@ class AnthropicLLM(LLMBase):
system_message = ""
filtered_messages = []
for message in messages:
if message['role'] == 'system':
system_message = message['content']
if message["role"] == "system":
system_message = message["content"]
else:
filtered_messages.append(message)
@@ -56,7 +56,7 @@ class AnthropicLLM(LLMBase):
"max_tokens": self.config.max_tokens,
"top_p": self.config.top_p,
}
if tools: # TODO: Remove tools if no issues found with new memory addition logic
if tools: # TODO: Remove tools if no issues found with new memory addition logic
params["tools"] = tools
params["tool_choice"] = tool_choice

View File

@@ -125,9 +125,7 @@ class AWSBedrockLLM(LLMBase):
},
}
input_body["textGenerationConfig"] = {
k: v
for k, v in input_body["textGenerationConfig"].items()
if v is not None
k: v for k, v in input_body["textGenerationConfig"].items() if v is not None
}
return input_body
@@ -161,9 +159,7 @@ class AWSBedrockLLM(LLMBase):
}
}
for prop, details in (
function["parameters"].get("properties", {}).items()
):
for prop, details in function["parameters"].get("properties", {}).items():
new_tool["toolSpec"]["inputSchema"]["json"]["properties"][prop] = {
"type": details.get("type", "string"),
"description": details.get("description", ""),
@@ -216,9 +212,7 @@ class AWSBedrockLLM(LLMBase):
# Use invoke_model method when no tools are provided
prompt = self._format_messages(messages)
provider = self.model.split(".")[0]
input_body = self._prepare_input(
provider, self.config.model, prompt, **self.model_kwargs
)
input_body = self._prepare_input(provider, self.config.model, prompt, **self.model_kwargs)
body = json.dumps(input_body)
response = self.client.invoke_model(

View File

@@ -15,20 +15,20 @@ class AzureOpenAILLM(LLMBase):
# Model name should match the custom deployment name chosen for it.
if not self.config.model:
self.config.model = "gpt-4o"
api_key = self.config.azure_kwargs.api_key or os.getenv("LLM_AZURE_OPENAI_API_KEY")
azure_deployment = self.config.azure_kwargs.azure_deployment or os.getenv("LLM_AZURE_DEPLOYMENT")
azure_endpoint = self.config.azure_kwargs.azure_endpoint or os.getenv("LLM_AZURE_ENDPOINT")
api_version = self.config.azure_kwargs.api_version or os.getenv("LLM_AZURE_API_VERSION")
self.client = AzureOpenAI(
azure_deployment=azure_deployment,
azure_deployment=azure_deployment,
azure_endpoint=azure_endpoint,
api_version=api_version,
api_key=api_key,
http_client=self.config.http_client
)
http_client=self.config.http_client,
)
def _parse_response(self, response, tools):
"""
Process the response based on whether tools are used or not.
@@ -87,7 +87,7 @@ class AzureOpenAILLM(LLMBase):
}
if response_format:
params["response_format"] = response_format
if tools: # TODO: Remove tools if no issues found with new memory addition logic
if tools: # TODO: Remove tools if no issues found with new memory addition logic
params["tools"] = tools
params["tool_choice"] = tool_choice

View File

@@ -1,11 +1,11 @@
import os
import json
import os
from typing import Dict, List, Optional
from openai import AzureOpenAI
from mem0.llms.base import LLMBase
from mem0.configs.llms.base import BaseLlmConfig
from mem0.llms.base import LLMBase
class AzureOpenAIStructuredLLM(LLMBase):
@@ -15,21 +15,21 @@ class AzureOpenAIStructuredLLM(LLMBase):
# Model name should match the custom deployment name chosen for it.
if not self.config.model:
self.config.model = "gpt-4o-2024-08-06"
api_key = os.getenv("LLM_AZURE_OPENAI_API_KEY") or self.config.azure_kwargs.api_key
azure_deployment = os.getenv("LLM_AZURE_DEPLOYMENT") or self.config.azure_kwargs.azure_deployment
azure_endpoint = os.getenv("LLM_AZURE_ENDPOINT") or self.config.azure_kwargs.azure_endpoint
api_version = os.getenv("LLM_AZURE_API_VERSION") or self.config.azure_kwargs.api_version
# Can display a warning if API version is of model and api-version
self.client = AzureOpenAI(
azure_deployment=azure_deployment,
azure_deployment=azure_deployment,
azure_endpoint=azure_endpoint,
api_version=api_version,
api_key=api_key,
http_client=self.config.http_client
)
http_client=self.config.http_client,
)
def _parse_response(self, response, tools):
"""
Process the response based on whether tools are used or not.

View File

@@ -4,12 +4,8 @@ from pydantic import BaseModel, Field, field_validator
class LlmConfig(BaseModel):
provider: str = Field(
description="Provider of the LLM (e.g., 'ollama', 'openai')", default="openai"
)
config: Optional[dict] = Field(
description="Configuration for the specific LLM", default={}
)
provider: str = Field(description="Provider of the LLM (e.g., 'ollama', 'openai')", default="openai")
config: Optional[dict] = Field(description="Configuration for the specific LLM", default={})
@field_validator("config")
def validate_config(cls, v, values):
@@ -23,7 +19,7 @@ class LlmConfig(BaseModel):
"litellm",
"azure_openai",
"openai_structured",
"azure_openai_structured"
"azure_openai_structured",
):
return v
else:

View File

@@ -67,9 +67,7 @@ class LiteLLM(LLMBase):
str: The generated response.
"""
if not litellm.supports_function_calling(self.config.model):
raise ValueError(
f"Model '{self.config.model}' in litellm does not support function calling."
)
raise ValueError(f"Model '{self.config.model}' in litellm does not support function calling.")
params = {
"model": self.config.model,
@@ -80,7 +78,7 @@ class LiteLLM(LLMBase):
}
if response_format:
params["response_format"] = response_format
if tools: # TODO: Remove tools if no issues found with new memory addition logic
if tools: # TODO: Remove tools if no issues found with new memory addition logic
params["tools"] = tools
params["tool_choice"] = tool_choice

View File

@@ -100,7 +100,7 @@ class OpenAILLM(LLMBase):
if response_format:
params["response_format"] = response_format
if tools: # TODO: Remove tools if no issues found with new memory addition logic
if tools: # TODO: Remove tools if no issues found with new memory addition logic
params["tools"] = tools
params["tool_choice"] = tool_choice

View File

@@ -1,6 +1,5 @@
import os
import json
import os
from typing import Dict, List, Optional
from openai import OpenAI
@@ -20,7 +19,6 @@ class OpenAIStructuredLLM(LLMBase):
base_url = self.config.openai_base_url or os.getenv("OPENAI_API_BASE")
self.client = OpenAI(api_key=api_key, base_url=base_url)
def _parse_response(self, response, tools):
"""
Process the response based on whether tools are used or not.
@@ -31,8 +29,8 @@ class OpenAIStructuredLLM(LLMBase):
Returns:
str or dict: The processed response.
"""
"""
if tools:
processed_response = {
"content": response.choices[0].message.content,
@@ -52,7 +50,6 @@ class OpenAIStructuredLLM(LLMBase):
else:
return response.choices[0].message.content
def generate_response(
self,
@@ -87,4 +84,4 @@ class OpenAIStructuredLLM(LLMBase):
response = self.client.beta.chat.completions.parse(**params)
return self._parse_response(response, tools)
return self._parse_response(response, tools)

View File

@@ -20,7 +20,7 @@ class TogetherLLM(LLMBase):
api_key = self.config.api_key or os.getenv("TOGETHER_API_KEY")
self.client = Together(api_key=api_key)
def _parse_response(self, response, tools):
"""
Process the response based on whether tools are used or not.
@@ -79,7 +79,7 @@ class TogetherLLM(LLMBase):
}
if response_format:
params["response_format"] = response_format
if tools: # TODO: Remove tools if no issues found with new memory addition logic
if tools: # TODO: Remove tools if no issues found with new memory addition logic
params["tools"] = tools
params["tool_choice"] = tool_choice

View File

@@ -7,11 +7,9 @@ ADD_MEMORY_TOOL = {
"description": "Add a memory",
"parameters": {
"type": "object",
"properties": {
"data": {"type": "string", "description": "Data to add to memory"}
},
"properties": {"data": {"type": "string", "description": "Data to add to memory"}},
"required": ["data"],
"additionalProperties": False
"additionalProperties": False,
},
},
}
@@ -34,7 +32,7 @@ UPDATE_MEMORY_TOOL = {
},
},
"required": ["memory_id", "data"],
"additionalProperties": False
"additionalProperties": False,
},
},
}
@@ -53,7 +51,7 @@ DELETE_MEMORY_TOOL = {
}
},
"required": ["memory_id"],
"additionalProperties": False
"additionalProperties": False,
},
},
}

View File

@@ -3,30 +3,28 @@ import logging
from langchain_community.graphs import Neo4jGraph
from rank_bm25 import BM25Okapi
from mem0.graphs.tools import (
ADD_MEMORY_TOOL_GRAPH,
ADD_MESSAGE_TOOL,
NOOP_TOOL,
SEARCH_TOOL,
UPDATE_MEMORY_TOOL_GRAPH,
UPDATE_MEMORY_STRUCT_TOOL_GRAPH,
ADD_MEMORY_STRUCT_TOOL_GRAPH,
NOOP_STRUCT_TOOL,
ADD_MESSAGE_STRUCT_TOOL,
SEARCH_STRUCT_TOOL
)
from mem0.graphs.utils import EXTRACT_ENTITIES_PROMPT, get_update_memory_messages
from mem0.graphs.tools import (ADD_MEMORY_STRUCT_TOOL_GRAPH,
ADD_MEMORY_TOOL_GRAPH, ADD_MESSAGE_STRUCT_TOOL,
ADD_MESSAGE_TOOL, NOOP_STRUCT_TOOL, NOOP_TOOL,
SEARCH_STRUCT_TOOL, SEARCH_TOOL,
UPDATE_MEMORY_STRUCT_TOOL_GRAPH,
UPDATE_MEMORY_TOOL_GRAPH)
from mem0.graphs.utils import (EXTRACT_ENTITIES_PROMPT,
get_update_memory_messages)
from mem0.utils.factory import EmbedderFactory, LlmFactory
logger = logging.getLogger(__name__)
class MemoryGraph:
def __init__(self, config):
self.config = config
self.graph = Neo4jGraph(self.config.graph_store.config.url, self.config.graph_store.config.username, self.config.graph_store.config.password)
self.embedding_model = EmbedderFactory.create(
self.config.embedder.provider, self.config.embedder.config
self.graph = Neo4jGraph(
self.config.graph_store.config.url,
self.config.graph_store.config.username,
self.config.graph_store.config.password,
)
self.embedding_model = EmbedderFactory.create(self.config.embedder.provider, self.config.embedder.config)
self.llm_provider = "openai_structured"
if self.config.llm.provider:
@@ -51,15 +49,23 @@ class MemoryGraph:
search_output = self._search(data, filters)
if self.config.graph_store.custom_prompt:
messages=[
{"role": "system", "content": EXTRACT_ENTITIES_PROMPT.replace("USER_ID", self.user_id).replace("CUSTOM_PROMPT", f"4. {self.config.graph_store.custom_prompt}")},
messages = [
{
"role": "system",
"content": EXTRACT_ENTITIES_PROMPT.replace("USER_ID", self.user_id).replace(
"CUSTOM_PROMPT", f"4. {self.config.graph_store.custom_prompt}"
),
},
{"role": "user", "content": data},
]
else:
messages=[
{"role": "system", "content": EXTRACT_ENTITIES_PROMPT.replace("USER_ID", self.user_id)},
messages = [
{
"role": "system",
"content": EXTRACT_ENTITIES_PROMPT.replace("USER_ID", self.user_id),
},
{"role": "user", "content": data},
]
]
_tools = [ADD_MESSAGE_TOOL]
if self.llm_provider in ["azure_openai_structured", "openai_structured"]:
@@ -67,11 +73,11 @@ class MemoryGraph:
extracted_entities = self.llm.generate_response(
messages=messages,
tools = _tools,
tools=_tools,
)
if extracted_entities['tool_calls']:
extracted_entities = extracted_entities['tool_calls'][0]['arguments']['entities']
if extracted_entities["tool_calls"]:
extracted_entities = extracted_entities["tool_calls"][0]["arguments"]["entities"]
else:
extracted_entities = []
@@ -79,9 +85,13 @@ class MemoryGraph:
update_memory_prompt = get_update_memory_messages(search_output, extracted_entities)
_tools=[UPDATE_MEMORY_TOOL_GRAPH, ADD_MEMORY_TOOL_GRAPH, NOOP_TOOL]
if self.llm_provider in ["azure_openai_structured","openai_structured"]:
_tools = [UPDATE_MEMORY_STRUCT_TOOL_GRAPH, ADD_MEMORY_STRUCT_TOOL_GRAPH, NOOP_STRUCT_TOOL]
_tools = [UPDATE_MEMORY_TOOL_GRAPH, ADD_MEMORY_TOOL_GRAPH, NOOP_TOOL]
if self.llm_provider in ["azure_openai_structured", "openai_structured"]:
_tools = [
UPDATE_MEMORY_STRUCT_TOOL_GRAPH,
ADD_MEMORY_STRUCT_TOOL_GRAPH,
NOOP_STRUCT_TOOL,
]
memory_updates = self.llm.generate_response(
messages=update_memory_prompt,
@@ -90,28 +100,29 @@ class MemoryGraph:
to_be_added = []
for item in memory_updates['tool_calls']:
if item['name'] == "add_graph_memory":
to_be_added.append(item['arguments'])
elif item['name'] == "update_graph_memory":
self._update_relationship(item['arguments']['source'], item['arguments']['destination'], item['arguments']['relationship'], filters)
elif item['name'] == "noop":
for item in memory_updates["tool_calls"]:
if item["name"] == "add_graph_memory":
to_be_added.append(item["arguments"])
elif item["name"] == "update_graph_memory":
self._update_relationship(
item["arguments"]["source"],
item["arguments"]["destination"],
item["arguments"]["relationship"],
filters,
)
elif item["name"] == "noop":
continue
returned_entities = []
for item in to_be_added:
source = item['source'].lower().replace(" ", "_")
source_type = item['source_type'].lower().replace(" ", "_")
relation = item['relationship'].lower().replace(" ", "_")
destination = item['destination'].lower().replace(" ", "_")
destination_type = item['destination_type'].lower().replace(" ", "_")
source = item["source"].lower().replace(" ", "_")
source_type = item["source_type"].lower().replace(" ", "_")
relation = item["relationship"].lower().replace(" ", "_")
destination = item["destination"].lower().replace(" ", "_")
destination_type = item["destination_type"].lower().replace(" ", "_")
returned_entities.append({
"source" : source,
"relationship" : relation,
"target" : destination
})
returned_entities.append({"source": source, "relationship": relation, "target": destination})
# Create embeddings
source_embedding = self.embedding_model.embed(source)
@@ -135,7 +146,7 @@ class MemoryGraph:
"dest_name": destination,
"source_embedding": source_embedding,
"dest_embedding": dest_embedding,
"user_id": filters["user_id"]
"user_id": filters["user_id"],
}
_ = self.graph.query(cypher, params=params)
@@ -150,19 +161,22 @@ class MemoryGraph:
_tools = [SEARCH_STRUCT_TOOL]
search_results = self.llm.generate_response(
messages=[
{"role": "system", "content": f"You are a smart assistant who understands the entities, their types, and relations in a given text. If user message contains self reference such as 'I', 'me', 'my' etc. then use {filters['user_id']} as the source node. Extract the entities."},
{
"role": "system",
"content": f"You are a smart assistant who understands the entities, their types, and relations in a given text. If user message contains self reference such as 'I', 'me', 'my' etc. then use {filters['user_id']} as the source node. Extract the entities.",
},
{"role": "user", "content": query},
],
tools = _tools
tools=_tools,
)
node_list = []
relation_list = []
for item in search_results['tool_calls']:
if item['name'] == "search":
for item in search_results["tool_calls"]:
if item["name"] == "search":
try:
node_list.extend(item['arguments']['nodes'])
node_list.extend(item["arguments"]["nodes"])
except Exception as e:
logger.error(f"Error in search tool: {e}")
@@ -201,13 +215,16 @@ class MemoryGraph:
RETURN m.name AS source, elementId(m) AS source_id, type(r) AS relation, elementId(r) AS relation_id, n.name AS destination, elementId(n) AS destination_id, similarity
ORDER BY similarity DESC
"""
params = {"n_embedding": n_embedding, "threshold": self.threshold, "user_id": filters["user_id"]}
params = {
"n_embedding": n_embedding,
"threshold": self.threshold,
"user_id": filters["user_id"],
}
ans = self.graph.query(cypher_query, params=params)
result_relations.extend(ans)
return result_relations
def search(self, query, filters):
"""
Search for memories and related graph data.
@@ -235,17 +252,12 @@ class MemoryGraph:
search_results = []
for item in reranked_results:
search_results.append({
"source": item[0],
"relationship": item[1],
"target": item[2]
})
search_results.append({"source": item[0], "relationship": item[1], "target": item[2]})
logger.info(f"Returned {len(search_results)} search results")
return search_results
def delete_all(self, filters):
cypher = """
MATCH (n {user_id: $user_id})
@@ -254,7 +266,6 @@ class MemoryGraph:
params = {"user_id": filters["user_id"]}
self.graph.query(cypher, params=params)
def get_all(self, filters):
"""
Retrieves all nodes and relationships from the graph database based on optional filtering criteria.
@@ -276,17 +287,18 @@ class MemoryGraph:
final_results = []
for result in results:
final_results.append({
"source": result['source'],
"relationship": result['relationship'],
"target": result['target']
})
final_results.append(
{
"source": result["source"],
"relationship": result["relationship"],
"target": result["target"],
}
)
logger.info(f"Retrieved {len(final_results)} relationships")
return final_results
def _update_relationship(self, source, target, relationship, filters):
"""
Update or create a relationship between two nodes in the graph.
@@ -309,14 +321,20 @@ class MemoryGraph:
MERGE (n1 {name: $source, user_id: $user_id})
MERGE (n2 {name: $target, user_id: $user_id})
"""
self.graph.query(check_and_create_query, params={"source": source, "target": target, "user_id": filters["user_id"]})
self.graph.query(
check_and_create_query,
params={"source": source, "target": target, "user_id": filters["user_id"]},
)
# Delete any existing relationship between the nodes
delete_query = """
MATCH (n1 {name: $source, user_id: $user_id})-[r]->(n2 {name: $target, user_id: $user_id})
DELETE r
"""
self.graph.query(delete_query, params={"source": source, "target": target, "user_id": filters["user_id"]})
self.graph.query(
delete_query,
params={"source": source, "target": target, "user_id": filters["user_id"]},
)
# Create the new relationship
create_query = f"""
@@ -324,7 +342,10 @@ class MemoryGraph:
CREATE (n1)-[r:{relationship}]->(n2)
RETURN n1, r, n2
"""
result = self.graph.query(create_query, params={"source": source, "target": target, "user_id": filters["user_id"]})
result = self.graph.query(
create_query,
params={"source": source, "target": target, "user_id": filters["user_id"]},
)
if not result:
raise Exception(f"Failed to update or create relationship between {source} and {target}")

View File

@@ -10,14 +10,14 @@ from typing import Any, Dict
import pytz
from pydantic import ValidationError
from mem0.configs.base import MemoryConfig, MemoryItem
from mem0.configs.prompts import get_update_memory_messages
from mem0.memory.base import MemoryBase
from mem0.memory.setup import setup_config
from mem0.memory.storage import SQLiteManager
from mem0.memory.telemetry import capture_event
from mem0.memory.utils import get_fact_retrieval_messages, parse_messages
from mem0.utils.factory import LlmFactory, EmbedderFactory, VectorStoreFactory
from mem0.configs.base import MemoryItem, MemoryConfig
from mem0.utils.factory import EmbedderFactory, LlmFactory, VectorStoreFactory
# Setup user config
setup_config()
@@ -30,9 +30,7 @@ class Memory(MemoryBase):
self.config = config
self.custom_prompt = self.config.custom_prompt
self.embedding_model = EmbedderFactory.create(
self.config.embedder.provider, self.config.embedder.config
)
self.embedding_model = EmbedderFactory.create(self.config.embedder.provider, self.config.embedder.config)
self.vector_store = VectorStoreFactory.create(
self.config.vector_store.provider, self.config.vector_store.config
)
@@ -45,12 +43,12 @@ class Memory(MemoryBase):
if self.version == "v1.1" and self.config.graph_store.config:
from mem0.memory.graph_memory import MemoryGraph
self.graph = MemoryGraph(self.config)
self.enable_graph = True
capture_event("mem0.init", self)
@classmethod
def from_config(cls, config_dict: Dict[str, Any]):
try:
@@ -60,7 +58,6 @@ class Memory(MemoryBase):
raise
return cls(config)
def add(
self,
messages,
@@ -98,9 +95,7 @@ class Memory(MemoryBase):
filters["run_id"] = metadata["run_id"] = run_id
if not any(key in filters for key in ("user_id", "agent_id", "run_id")):
raise ValueError(
"One of the filters: user_id, agent_id or run_id is required!"
)
raise ValueError("One of the filters: user_id, agent_id or run_id is required!")
if isinstance(messages, str):
messages = [{"role": "user", "content": messages}]
@@ -116,8 +111,8 @@ class Memory(MemoryBase):
if self.version == "v1.1":
return {
"results" : vector_store_result,
"relations" : graph_result,
"results": vector_store_result,
"relations": graph_result,
}
else:
warnings.warn(
@@ -125,29 +120,29 @@ class Memory(MemoryBase):
"To use the latest format, set `api_version='v1.1'`. "
"The current format will be removed in mem0ai 1.1.0 and later versions.",
category=DeprecationWarning,
stacklevel=2
stacklevel=2,
)
return {"message": "ok"}
def _add_to_vector_store(self, messages, metadata, filters):
parsed_messages = parse_messages(messages)
if self.custom_prompt:
system_prompt=self.custom_prompt
user_prompt=f"Input: {parsed_messages}"
system_prompt = self.custom_prompt
user_prompt = f"Input: {parsed_messages}"
else:
system_prompt, user_prompt = get_fact_retrieval_messages(parsed_messages)
response = self.llm.generate_response(
messages=[{"role": "system", "content": system_prompt}, {"role": "user", "content": user_prompt}],
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt},
],
response_format={"type": "json_object"},
)
try:
new_retrieved_facts = json.loads(response)[
"facts"
]
new_retrieved_facts = json.loads(response)["facts"]
except Exception as e:
logging.error(f"Error in new_retrieved_facts: {e}")
new_retrieved_facts = []
@@ -178,24 +173,30 @@ class Memory(MemoryBase):
logging.info(resp)
try:
if resp["event"] == "ADD":
memory_id = self._create_memory(data=resp["text"], metadata=metadata)
returned_memories.append({
"memory" : resp["text"],
"event" : resp["event"],
})
_ = self._create_memory(data=resp["text"], metadata=metadata)
returned_memories.append(
{
"memory": resp["text"],
"event": resp["event"],
}
)
elif resp["event"] == "UPDATE":
self._update_memory(memory_id=resp["id"], data=resp["text"], metadata=metadata)
returned_memories.append({
"memory" : resp["text"],
"event" : resp["event"],
"previous_memory" : resp["old_memory"],
})
returned_memories.append(
{
"memory": resp["text"],
"event": resp["event"],
"previous_memory": resp["old_memory"],
}
)
elif resp["event"] == "DELETE":
self._delete_memory(memory_id=resp["id"])
returned_memories.append({
"memory" : resp["text"],
"event" : resp["event"],
})
returned_memories.append(
{
"memory": resp["text"],
"event": resp["event"],
}
)
elif resp["event"] == "NONE":
logging.info("NOOP for Memory.")
except Exception as e:
@@ -206,7 +207,6 @@ class Memory(MemoryBase):
capture_event("mem0.add", self)
return returned_memories
def _add_to_graph(self, messages, filters):
added_entities = []
@@ -220,7 +220,6 @@ class Memory(MemoryBase):
return added_entities
def get(self, memory_id):
"""
Retrieve a memory by ID.
@@ -236,11 +235,7 @@ class Memory(MemoryBase):
if not memory:
return None
filters = {
key: memory.payload[key]
for key in ["user_id", "agent_id", "run_id"]
if memory.payload.get(key)
}
filters = {key: memory.payload[key] for key in ["user_id", "agent_id", "run_id"] if memory.payload.get(key)}
# Prepare base memory item
memory_item = MemoryItem(
@@ -261,9 +256,7 @@ class Memory(MemoryBase):
"created_at",
"updated_at",
}
additional_metadata = {
k: v for k, v in memory.payload.items() if k not in excluded_keys
}
additional_metadata = {k: v for k, v in memory.payload.items() if k not in excluded_keys}
if additional_metadata:
memory_item["metadata"] = additional_metadata
@@ -271,7 +264,6 @@ class Memory(MemoryBase):
return result
def get_all(self, user_id=None, agent_id=None, run_id=None, limit=100):
"""
List all memories.
@@ -288,10 +280,12 @@ class Memory(MemoryBase):
filters["run_id"] = run_id
capture_event("mem0.get_all", self, {"filters": len(filters), "limit": limit})
with concurrent.futures.ThreadPoolExecutor() as executor:
future_memories = executor.submit(self._get_all_from_vector_store, filters, limit)
future_graph_entities = executor.submit(self.graph.get_all, filters) if self.version == "v1.1" and self.enable_graph else None
future_graph_entities = (
executor.submit(self.graph.get_all, filters) if self.version == "v1.1" and self.enable_graph else None
)
all_memories = future_memories.result()
graph_entities = future_graph_entities.result() if future_graph_entities else None
@@ -307,15 +301,22 @@ class Memory(MemoryBase):
"To use the latest format, set `api_version='v1.1'`. "
"The current format will be removed in mem0ai 1.1.0 and later versions.",
category=DeprecationWarning,
stacklevel=2
stacklevel=2,
)
return all_memories
def _get_all_from_vector_store(self, filters, limit):
memories = self.vector_store.list(filters=filters, limit=limit)
excluded_keys = {"user_id", "agent_id", "run_id", "hash", "data", "created_at", "updated_at"}
excluded_keys = {
"user_id",
"agent_id",
"run_id",
"hash",
"data",
"created_at",
"updated_at",
}
all_memories = [
{
**MemoryItem(
@@ -325,19 +326,9 @@ class Memory(MemoryBase):
created_at=mem.payload.get("created_at"),
updated_at=mem.payload.get("updated_at"),
).model_dump(exclude={"score"}),
**{
key: mem.payload[key]
for key in ["user_id", "agent_id", "run_id"]
if key in mem.payload
},
**{key: mem.payload[key] for key in ["user_id", "agent_id", "run_id"] if key in mem.payload},
**(
{
"metadata": {
k: v
for k, v in mem.payload.items()
if k not in excluded_keys
}
}
{"metadata": {k: v for k, v in mem.payload.items() if k not in excluded_keys}}
if any(k for k in mem.payload if k not in excluded_keys)
else {}
),
@@ -346,10 +337,7 @@ class Memory(MemoryBase):
]
return all_memories
def search(
self, query, user_id=None, agent_id=None, run_id=None, limit=100, filters=None
):
def search(self, query, user_id=None, agent_id=None, run_id=None, limit=100, filters=None):
"""
Search for memories.
@@ -373,15 +361,21 @@ class Memory(MemoryBase):
filters["run_id"] = run_id
if not any(key in filters for key in ("user_id", "agent_id", "run_id")):
raise ValueError(
"One of the filters: user_id, agent_id or run_id is required!"
)
raise ValueError("One of the filters: user_id, agent_id or run_id is required!")
capture_event("mem0.search", self, {"filters": len(filters), "limit": limit, "version": self.version})
capture_event(
"mem0.search",
self,
{"filters": len(filters), "limit": limit, "version": self.version},
)
with concurrent.futures.ThreadPoolExecutor() as executor:
future_memories = executor.submit(self._search_vector_store, query, filters, limit)
future_graph_entities = executor.submit(self.graph.search, query, filters) if self.version == "v1.1" and self.enable_graph else None
future_graph_entities = (
executor.submit(self.graph.search, query, filters)
if self.version == "v1.1" and self.enable_graph
else None
)
original_memories = future_memories.result()
graph_entities = future_graph_entities.result() if future_graph_entities else None
@@ -390,23 +384,20 @@ class Memory(MemoryBase):
if self.enable_graph:
return {"results": original_memories, "relations": graph_entities}
else:
return {"results" : original_memories}
return {"results": original_memories}
else:
warnings.warn(
"The current get_all API output format is deprecated. "
"To use the latest format, set `api_version='v1.1'`. "
"The current format will be removed in mem0ai 1.1.0 and later versions.",
category=DeprecationWarning,
stacklevel=2
stacklevel=2,
)
return original_memories
def _search_vector_store(self, query, filters, limit):
embeddings = self.embedding_model.embed(query)
memories = self.vector_store.search(
query=embeddings, limit=limit, filters=filters
)
memories = self.vector_store.search(query=embeddings, limit=limit, filters=filters)
excluded_keys = {
"user_id",
@@ -428,19 +419,9 @@ class Memory(MemoryBase):
updated_at=mem.payload.get("updated_at"),
score=mem.score,
).model_dump(),
**{
key: mem.payload[key]
for key in ["user_id", "agent_id", "run_id"]
if key in mem.payload
},
**{key: mem.payload[key] for key in ["user_id", "agent_id", "run_id"] if key in mem.payload},
**(
{
"metadata": {
k: v
for k, v in mem.payload.items()
if k not in excluded_keys
}
}
{"metadata": {k: v for k, v in mem.payload.items() if k not in excluded_keys}}
if any(k for k in mem.payload if k not in excluded_keys)
else {}
),
@@ -450,7 +431,6 @@ class Memory(MemoryBase):
return original_memories
def update(self, memory_id, data):
"""
Update a memory by ID.
@@ -466,7 +446,6 @@ class Memory(MemoryBase):
self._update_memory(memory_id, data)
return {"message": "Memory updated successfully!"}
def delete(self, memory_id):
"""
Delete a memory by ID.
@@ -478,7 +457,6 @@ class Memory(MemoryBase):
self._delete_memory(memory_id)
return {"message": "Memory deleted successfully!"}
def delete_all(self, user_id=None, agent_id=None, run_id=None):
"""
Delete all memories.
@@ -511,8 +489,7 @@ class Memory(MemoryBase):
if self.version == "v1.1" and self.enable_graph:
self.graph.delete_all(filters)
return {'message': 'Memories deleted successfully!'}
return {"message": "Memories deleted successfully!"}
def history(self, memory_id):
"""
@@ -527,7 +504,6 @@ class Memory(MemoryBase):
capture_event("mem0.history", self, {"memory_id": memory_id})
return self.db.get_history(memory_id)
def _create_memory(self, data, metadata=None):
logging.info(f"Creating memory with {data=}")
embeddings = self.embedding_model.embed(data)
@@ -542,12 +518,9 @@ class Memory(MemoryBase):
ids=[memory_id],
payloads=[metadata],
)
self.db.add_history(
memory_id, None, data, "ADD", created_at=metadata["created_at"]
)
self.db.add_history(memory_id, None, data, "ADD", created_at=metadata["created_at"])
return memory_id
def _update_memory(self, memory_id, data, metadata=None):
logger.info(f"Updating memory with {data=}")
existing_memory = self.vector_store.get(vector_id=memory_id)
@@ -557,9 +530,7 @@ class Memory(MemoryBase):
new_metadata["data"] = data
new_metadata["hash"] = existing_memory.payload.get("hash")
new_metadata["created_at"] = existing_memory.payload.get("created_at")
new_metadata["updated_at"] = datetime.now(
pytz.timezone("US/Pacific")
).isoformat()
new_metadata["updated_at"] = datetime.now(pytz.timezone("US/Pacific")).isoformat()
if "user_id" in existing_memory.payload:
new_metadata["user_id"] = existing_memory.payload["user_id"]
@@ -584,7 +555,6 @@ class Memory(MemoryBase):
updated_at=new_metadata["updated_at"],
)
def _delete_memory(self, memory_id):
logging.info(f"Deleting memory with {memory_id=}")
existing_memory = self.vector_store.get(vector_id=memory_id)
@@ -592,7 +562,6 @@ class Memory(MemoryBase):
self.vector_store.delete(vector_id=memory_id)
self.db.add_history(memory_id, prev_value, None, "DELETE", is_deleted=1)
def reset(self):
"""
Reset the memory store.
@@ -602,6 +571,5 @@ class Memory(MemoryBase):
self.db.reset()
capture_event("mem0.reset", self)
def chat(self, query):
raise NotImplementedError("Chat function not implemented yet.")

View File

@@ -12,9 +12,7 @@ class SQLiteManager:
with self.connection:
cursor = self.connection.cursor()
cursor.execute(
"SELECT name FROM sqlite_master WHERE type='table' AND name='history'"
)
cursor.execute("SELECT name FROM sqlite_master WHERE type='table' AND name='history'")
table_exists = cursor.fetchone() is not None
if table_exists:
@@ -62,7 +60,7 @@ class SQLiteManager:
INSERT INTO history (id, memory_id, old_memory, new_memory, new_value, event, created_at, updated_at, is_deleted)
SELECT id, memory_id, prev_value, new_value, new_value, event, timestamp, timestamp, is_deleted
FROM old_history
"""
""" # noqa: E501
)
cursor.execute("DROP TABLE old_history")

View File

@@ -1,7 +1,7 @@
import logging
import os
import platform
import sys
import os
from posthog import Posthog
@@ -15,8 +15,9 @@ if isinstance(MEM0_TELEMETRY, str):
if not isinstance(MEM0_TELEMETRY, bool):
raise ValueError("MEM0_TELEMETRY must be a boolean value.")
logging.getLogger('posthog').setLevel(logging.CRITICAL + 1)
logging.getLogger('urllib3').setLevel(logging.CRITICAL + 1)
logging.getLogger("posthog").setLevel(logging.CRITICAL + 1)
logging.getLogger("urllib3").setLevel(logging.CRITICAL + 1)
class AnonymousTelemetry:
def __init__(self, project_api_key, host):
@@ -24,9 +25,8 @@ class AnonymousTelemetry:
# Call setup config to ensure that the user_id is generated
setup_config()
self.user_id = get_user_id()
# Optional
if not MEM0_TELEMETRY:
self.posthog.disabled = True
if not MEM0_TELEMETRY:
self.posthog.disabled = True
def capture_event(self, event_name, properties=None):
if properties is None:
@@ -40,9 +40,7 @@ class AnonymousTelemetry:
"machine": platform.machine(),
**properties,
}
self.posthog.capture(
distinct_id=self.user_id, event=event_name, properties=properties
)
self.posthog.capture(distinct_id=self.user_id, event=event_name, properties=properties)
def identify_user(self, user_id, properties=None):
if properties is None:
@@ -65,6 +63,7 @@ def capture_event(event_name, memory_instance, additional_data=None):
"collection": memory_instance.collection_name,
"vector_size": memory_instance.embedding_model.config.embedding_dims,
"history_store": "sqlite",
"graph_store": f"{memory_instance.graph.__class__.__module__}.{memory_instance.graph.__class__.__name__}" if memory_instance.config.graph_store.config else None,
"vector_store": f"{memory_instance.vector_store.__class__.__module__}.{memory_instance.vector_store.__class__.__name__}",
"llm": f"{memory_instance.llm.__class__.__module__}.{memory_instance.llm.__class__.__name__}",
"embedding_model": f"{memory_instance.embedding_model.__class__.__module__}.{memory_instance.embedding_model.__class__.__name__}",
@@ -76,7 +75,6 @@ def capture_event(event_name, memory_instance, additional_data=None):
telemetry.capture_event(event_name, event_data)
def capture_client_event(event_name, instance, additional_data=None):
event_data = {
"function": f"{instance.__class__.__module__}.{instance.__class__.__name__}",

View File

@@ -4,13 +4,14 @@ from mem0.configs.prompts import FACT_RETRIEVAL_PROMPT
def get_fact_retrieval_messages(message):
return FACT_RETRIEVAL_PROMPT, f"Input: {message}"
def parse_messages(messages):
response = ""
for msg in messages:
if msg["role"] == "system":
response += f"system: {msg['content']}\n"
if msg["role"] == "user":
response += f"user: {msg['content']}\n"
if msg["role"] == "assistant":
response += f"assistant: {msg['content']}\n"
return response
response = ""
for msg in messages:
if msg["role"] == "system":
response += f"system: {msg['content']}\n"
if msg["role"] == "user":
response += f"user: {msg['content']}\n"
if msg["role"] == "assistant":
response += f"assistant: {msg['content']}\n"
return response

View File

@@ -10,7 +10,7 @@ try:
import litellm
except ImportError:
user_input = input("The 'litellm' library is required. Install it now? [y/N]: ")
if user_input.lower() == 'y':
if user_input.lower() == "y":
try:
subprocess.check_call([sys.executable, "-m", "pip", "install", "litellm"])
import litellm
@@ -105,16 +105,10 @@ class Completions:
prepared_messages = self._prepare_messages(messages)
if prepared_messages[-1]["role"] == "user":
self._async_add_to_memory(
messages, user_id, agent_id, run_id, metadata, filters
)
relevant_memories = self._fetch_relevant_memories(
messages, user_id, agent_id, run_id, filters, limit
)
self._async_add_to_memory(messages, user_id, agent_id, run_id, metadata, filters)
relevant_memories = self._fetch_relevant_memories(messages, user_id, agent_id, run_id, filters, limit)
logger.debug(f"Retrieved {len(relevant_memories)} relevant memories")
prepared_messages[-1]["content"] = self._format_query_with_memories(
messages, relevant_memories
)
prepared_messages[-1]["content"] = self._format_query_with_memories(messages, relevant_memories)
response = litellm.completion(
model=model,
@@ -156,9 +150,7 @@ class Completions:
messages[0]["content"] = MEMORY_ANSWER_PROMPT
return messages
def _async_add_to_memory(
self, messages, user_id, agent_id, run_id, metadata, filters
):
def _async_add_to_memory(self, messages, user_id, agent_id, run_id, metadata, filters):
def add_task():
logger.debug("Adding to memory asynchronously")
self.mem0_client.add(
@@ -172,13 +164,9 @@ class Completions:
threading.Thread(target=add_task, daemon=True).start()
def _fetch_relevant_memories(
self, messages, user_id, agent_id, run_id, filters, limit
):
def _fetch_relevant_memories(self, messages, user_id, agent_id, run_id, filters, limit):
# Currently, only pass the last 6 messages to the search API to prevent long query
message_input = [
f"{message['role']}: {message['content']}" for message in messages
][-6:]
message_input = [f"{message['role']}: {message['content']}" for message in messages][-6:]
# TODO: Make it better by summarizing the past conversation
return self.mem0_client.search(
query="\n".join(message_input),

View File

@@ -21,7 +21,7 @@ class LlmFactory:
"azure_openai": "mem0.llms.azure_openai.AzureOpenAILLM",
"openai_structured": "mem0.llms.openai_structured.OpenAIStructuredLLM",
"anthropic": "mem0.llms.anthropic.AnthropicLLM",
"azure_openai_structured": "mem0.llms.azure_openai_structured.AzureOpenAIStructuredLLM"
"azure_openai_structured": "mem0.llms.azure_openai_structured.AzureOpenAIStructuredLLM",
}
@classmethod
@@ -59,7 +59,7 @@ class VectorStoreFactory:
"qdrant": "mem0.vector_stores.qdrant.Qdrant",
"chroma": "mem0.vector_stores.chroma.ChromaDB",
"pgvector": "mem0.vector_stores.pgvector.PGVector",
"milvus": "mem0.vector_stores.milvus.MilvusDB"
"milvus": "mem0.vector_stores.milvus.MilvusDB",
}
@classmethod

View File

@@ -80,24 +80,14 @@ class ChromaDB(VectorStoreBase):
values.append(value)
ids, distances, metadatas = values
max_length = max(
len(v) for v in values if isinstance(v, list) and v is not None
)
max_length = max(len(v) for v in values if isinstance(v, list) and v is not None)
result = []
for i in range(max_length):
entry = OutputData(
id=ids[i] if isinstance(ids, list) and ids and i < len(ids) else None,
score=(
distances[i]
if isinstance(distances, list) and distances and i < len(distances)
else None
),
payload=(
metadatas[i]
if isinstance(metadatas, list) and metadatas and i < len(metadatas)
else None
),
score=(distances[i] if isinstance(distances, list) and distances and i < len(distances) else None),
payload=(metadatas[i] if isinstance(metadatas, list) and metadatas and i < len(metadatas) else None),
)
result.append(entry)
@@ -143,9 +133,7 @@ class ChromaDB(VectorStoreBase):
logger.info(f"Inserting {len(vectors)} vectors into collection {self.collection_name}")
self.collection.add(ids=ids, embeddings=vectors, metadatas=payloads)
def search(
self, query: List[list], limit: int = 5, filters: Optional[Dict] = None
) -> List[OutputData]:
def search(self, query: List[list], limit: int = 5, filters: Optional[Dict] = None) -> List[OutputData]:
"""
Search for similar vectors.
@@ -157,9 +145,7 @@ class ChromaDB(VectorStoreBase):
Returns:
List[OutputData]: Search results.
"""
results = self.collection.query(
query_embeddings=query, where=filters, n_results=limit
)
results = self.collection.query(query_embeddings=query, where=filters, n_results=limit)
final_results = self._parse_output(results)
return final_results
@@ -225,9 +211,7 @@ class ChromaDB(VectorStoreBase):
"""
return self.client.get_collection(name=self.collection_name)
def list(
self, filters: Optional[Dict] = None, limit: int = 100
) -> List[OutputData]:
def list(self, filters: Optional[Dict] = None, limit: int = 100) -> List[OutputData]:
"""
List all vectors in a collection.

View File

@@ -8,15 +8,13 @@ class VectorStoreConfig(BaseModel):
description="Provider of the vector store (e.g., 'qdrant', 'chroma')",
default="qdrant",
)
config: Optional[Dict] = Field(
description="Configuration for the specific vector store", default=None
)
config: Optional[Dict] = Field(description="Configuration for the specific vector store", default=None)
_provider_configs: Dict[str, str] = {
"qdrant": "QdrantConfig",
"chroma": "ChromaDbConfig",
"pgvector": "PGVectorConfig",
"milvus" : "MilvusDBConfig"
"milvus": "MilvusDBConfig",
}
@model_validator(mode="after")

View File

@@ -1,15 +1,17 @@
import logging
from typing import Dict, Optional
from pydantic import BaseModel
from typing import Optional, Dict
from mem0.vector_stores.base import VectorStoreBase
from mem0.configs.vector_stores.milvus import MetricType
from mem0.vector_stores.base import VectorStoreBase
try:
import pymilvus
import pymilvus # noqa: F401
except ImportError:
raise ImportError("The 'pymilvus' library is required. Please install it using 'pip install pymilvus'.")
from pymilvus import MilvusClient, CollectionSchema, FieldSchema, DataType
from pymilvus import CollectionSchema, DataType, FieldSchema, MilvusClient
logger = logging.getLogger(__name__)
@@ -20,9 +22,15 @@ class OutputData(BaseModel):
payload: Optional[Dict] # metadata
class MilvusDB(VectorStoreBase):
def __init__(self, url: str, token: str, collection_name: str, embedding_model_dims: int, metric_type: MetricType) -> None:
def __init__(
self,
url: str,
token: str,
collection_name: str,
embedding_model_dims: int,
metric_type: MetricType,
) -> None:
"""Initialize the MilvusDB database.
Args:
@@ -32,22 +40,21 @@ class MilvusDB(VectorStoreBase):
embedding_model_dims (int): Dimensions of the embedding model (defaults to 1536).
metric_type (MetricType): Metric type for similarity search (defaults to L2).
"""
self.collection_name = collection_name
self.embedding_model_dims = embedding_model_dims
self.metric_type = metric_type
self.client = MilvusClient(uri=url,token=token)
self.client = MilvusClient(uri=url, token=token)
self.create_col(
collection_name=self.collection_name,
vector_size=self.embedding_model_dims,
metric_type=self.metric_type
metric_type=self.metric_type,
)
def create_col(
self, collection_name : str, vector_size : str, metric_type : MetricType = MetricType.COSINE
self,
collection_name: str,
vector_size: str,
metric_type: MetricType = MetricType.COSINE,
) -> None:
"""Create a new collection with index_type AUTOINDEX.
@@ -65,7 +72,7 @@ class MilvusDB(VectorStoreBase):
FieldSchema(name="vectors", dtype=DataType.FLOAT_VECTOR, dim=vector_size),
FieldSchema(name="metadata", dtype=DataType.JSON),
]
schema = CollectionSchema(fields, enable_dynamic_field=True)
index = self.client.prepare_index_params(
@@ -73,12 +80,10 @@ class MilvusDB(VectorStoreBase):
metric_type=metric_type,
index_type="AUTOINDEX",
index_name="vector_index",
params={ "nlist": 128 }
params={"nlist": 128},
)
self.client.create_collection(collection_name=collection_name, schema=schema, index_params=index)
def insert(self, ids, vectors, payloads, **kwargs: Optional[dict[str, any]]):
"""Insert vectors into a collection.
@@ -91,9 +96,8 @@ class MilvusDB(VectorStoreBase):
data = {"id": idx, "vectors": embedding, "metadata": metadata}
self.client.insert(collection_name=self.collection_name, data=data, **kwargs)
def _create_filter(self, filters: dict):
"""Prepare filters for efficient query.
"""Prepare filters for efficient query.
Args:
filters (dict): filters [user_id, agent_id, run_id]
@@ -109,8 +113,7 @@ class MilvusDB(VectorStoreBase):
operands.append(f'(metadata["{key}"] == {value})')
return " and ".join(operands)
def _parse_output(self, data: list):
"""
Parse the output data.
@@ -125,16 +128,15 @@ class MilvusDB(VectorStoreBase):
for value in data:
uid, score, metadata = (
value.get("id"),
value.get("distance"),
value.get("entity",{}).get("metadata")
value.get("id"),
value.get("distance"),
value.get("entity", {}).get("metadata"),
)
memory_obj = OutputData(id=uid, score=score, payload=metadata)
memory.append(memory_obj)
return memory
def search(self, query: list, limit: int = 5, filters: dict = None) -> list:
"""
@@ -150,14 +152,15 @@ class MilvusDB(VectorStoreBase):
"""
query_filter = self._create_filter(filters) if filters else None
hits = self.client.search(
collection_name=self.collection_name,
data=[query], limit=limit, filter=query_filter,
output_fields=["*"]
collection_name=self.collection_name,
data=[query],
limit=limit,
filter=query_filter,
output_fields=["*"],
)
result = self._parse_output(data=hits[0])
return result
def delete(self, vector_id):
"""
Delete a vector by ID.
@@ -166,7 +169,6 @@ class MilvusDB(VectorStoreBase):
vector_id (str): ID of the vector to delete.
"""
self.client.delete(collection_name=self.collection_name, ids=vector_id)
def update(self, vector_id=None, vector=None, payload=None):
"""
@@ -177,7 +179,7 @@ class MilvusDB(VectorStoreBase):
vector (List[float], optional): Updated vector.
payload (Dict, optional): Updated payload.
"""
schema = {"id" : vector_id, "vectors": vector, "metadata" : payload}
schema = {"id": vector_id, "vectors": vector, "metadata": payload}
self.client.upsert(collection_name=self.collection_name, data=schema)
def get(self, vector_id):
@@ -191,7 +193,11 @@ class MilvusDB(VectorStoreBase):
OutputData: Retrieved vector.
"""
result = self.client.get(collection_name=self.collection_name, ids=vector_id)
output = OutputData(id=result[0].get("id", None), score=None, payload=result[0].get("metadata", None))
output = OutputData(
id=result[0].get("id", None),
score=None,
payload=result[0].get("metadata", None),
)
return output
def list_cols(self):
@@ -228,12 +234,9 @@ class MilvusDB(VectorStoreBase):
List[OutputData]: List of vectors.
"""
query_filter = self._create_filter(filters) if filters else None
result = self.client.query(
collection_name=self.collection_name,
filter=query_filter,
limit=limit)
result = self.client.query(collection_name=self.collection_name, filter=query_filter, limit=limit)
memories = []
for data in result:
obj = OutputData(id=data.get("id"), score=None, payload=data.get("metadata"))
memories.append(obj)
return [memories]
return [memories]

View File

@@ -14,6 +14,7 @@ from mem0.vector_stores.base import VectorStoreBase
logger = logging.getLogger(__name__)
class OutputData(BaseModel):
id: Optional[str]
score: Optional[float]
@@ -22,7 +23,15 @@ class OutputData(BaseModel):
class PGVector(VectorStoreBase):
def __init__(
self, dbname, collection_name, embedding_model_dims, user, password, host, port, diskann
self,
dbname,
collection_name,
embedding_model_dims,
user,
password,
host,
port,
diskann,
):
"""
Initialize the PGVector database.
@@ -40,9 +49,7 @@ class PGVector(VectorStoreBase):
self.collection_name = collection_name
self.use_diskann = diskann
self.conn = psycopg2.connect(
dbname=dbname, user=user, password=password, host=host, port=port
)
self.conn = psycopg2.connect(dbname=dbname, user=user, password=password, host=host, port=port)
self.cur = self.conn.cursor()
collections = self.list_cols()
@@ -73,7 +80,8 @@ class PGVector(VectorStoreBase):
self.cur.execute("SELECT * FROM pg_extension WHERE extname = 'vectorscale'")
if self.cur.fetchone():
# Create DiskANN index if extension is installed for faster search
self.cur.execute(f"""
self.cur.execute(
f"""
CREATE INDEX IF NOT EXISTS {self.collection_name}_vector_idx
ON {self.collection_name}
USING diskann (vector);
@@ -94,10 +102,7 @@ class PGVector(VectorStoreBase):
logger.info(f"Inserting {len(vectors)} vectors into collection {self.collection_name}")
json_payloads = [json.dumps(payload) for payload in payloads]
data = [
(id, vector, payload)
for id, vector, payload in zip(ids, vectors, json_payloads)
]
data = [(id, vector, payload) for id, vector, payload in zip(ids, vectors, json_payloads)]
execute_values(
self.cur,
f"INSERT INTO {self.collection_name} (id, vector, payload) VALUES %s",
@@ -125,9 +130,7 @@ class PGVector(VectorStoreBase):
filter_conditions.append("payload->>%s = %s")
filter_params.extend([k, str(v)])
filter_clause = (
"WHERE " + " AND ".join(filter_conditions) if filter_conditions else ""
)
filter_clause = "WHERE " + " AND ".join(filter_conditions) if filter_conditions else ""
self.cur.execute(
f"""
@@ -137,13 +140,11 @@ class PGVector(VectorStoreBase):
ORDER BY distance
LIMIT %s
""",
(query, *filter_params, limit),
(query, *filter_params, limit),
)
results = self.cur.fetchall()
return [
OutputData(id=str(r[0]), score=float(r[1]), payload=r[2]) for r in results
]
return [OutputData(id=str(r[0]), score=float(r[1]), payload=r[2]) for r in results]
def delete(self, vector_id):
"""
@@ -152,9 +153,7 @@ class PGVector(VectorStoreBase):
Args:
vector_id (str): ID of the vector to delete.
"""
self.cur.execute(
f"DELETE FROM {self.collection_name} WHERE id = %s", (vector_id,)
)
self.cur.execute(f"DELETE FROM {self.collection_name} WHERE id = %s", (vector_id,))
self.conn.commit()
def update(self, vector_id, vector=None, payload=None):
@@ -204,9 +203,7 @@ class PGVector(VectorStoreBase):
Returns:
List[str]: List of collection names.
"""
self.cur.execute(
"SELECT table_name FROM information_schema.tables WHERE table_schema = 'public'"
)
self.cur.execute("SELECT table_name FROM information_schema.tables WHERE table_schema = 'public'")
return [row[0] for row in self.cur.fetchall()]
def delete_col(self):
@@ -254,9 +251,7 @@ class PGVector(VectorStoreBase):
filter_conditions.append("payload->>%s = %s")
filter_params.extend([k, str(v)])
filter_clause = (
"WHERE " + " AND ".join(filter_conditions) if filter_conditions else ""
)
filter_clause = "WHERE " + " AND ".join(filter_conditions) if filter_conditions else ""
query = f"""
SELECT id, vector, payload

View File

@@ -3,16 +3,9 @@ import os
import shutil
from qdrant_client import QdrantClient
from qdrant_client.models import (
Distance,
FieldCondition,
Filter,
MatchValue,
PointIdsList,
PointStruct,
Range,
VectorParams,
)
from qdrant_client.models import (Distance, FieldCondition, Filter, MatchValue,
PointIdsList, PointStruct, Range,
VectorParams)
from mem0.vector_stores.base import VectorStoreBase
@@ -68,9 +61,7 @@ class Qdrant(VectorStoreBase):
self.collection_name = collection_name
self.create_col(embedding_model_dims, on_disk)
def create_col(
self, vector_size: int, on_disk: bool, distance: Distance = Distance.COSINE
):
def create_col(self, vector_size: int, on_disk: bool, distance: Distance = Distance.COSINE):
"""
Create a new collection.
@@ -83,16 +74,12 @@ class Qdrant(VectorStoreBase):
response = self.list_cols()
for collection in response.collections:
if collection.name == self.collection_name:
logging.debug(
f"Collection {self.collection_name} already exists. Skipping creation."
)
logging.debug(f"Collection {self.collection_name} already exists. Skipping creation.")
return
self.client.create_collection(
collection_name=self.collection_name,
vectors_config=VectorParams(
size=vector_size, distance=distance, on_disk=on_disk
),
vectors_config=VectorParams(size=vector_size, distance=distance, on_disk=on_disk),
)
def insert(self, vectors: list, payloads: list = None, ids: list = None):
@@ -128,15 +115,9 @@ class Qdrant(VectorStoreBase):
conditions = []
for key, value in filters.items():
if isinstance(value, dict) and "gte" in value and "lte" in value:
conditions.append(
FieldCondition(
key=key, range=Range(gte=value["gte"], lte=value["lte"])
)
)
conditions.append(FieldCondition(key=key, range=Range(gte=value["gte"], lte=value["lte"])))
else:
conditions.append(
FieldCondition(key=key, match=MatchValue(value=value))
)
conditions.append(FieldCondition(key=key, match=MatchValue(value=value)))
return Filter(must=conditions) if conditions else None
def search(self, query: list, limit: int = 5, filters: dict = None) -> list:
@@ -196,9 +177,7 @@ class Qdrant(VectorStoreBase):
Returns:
dict: Retrieved vector.
"""
result = self.client.retrieve(
collection_name=self.collection_name, ids=[vector_id], with_payload=True
)
result = self.client.retrieve(collection_name=self.collection_name, ids=[vector_id], with_payload=True)
return result[0] if result else None
def list_cols(self) -> list: