Files
t6_mem0/mem0/utils/factory.py
2024-09-16 17:39:54 -07:00

75 lines
2.7 KiB
Python

import importlib
from mem0.configs.embeddings.base import BaseEmbedderConfig
from mem0.configs.llms.base import BaseLlmConfig
def load_class(class_type):
module_path, class_name = class_type.rsplit(".", 1)
module = importlib.import_module(module_path)
return getattr(module, class_name)
class LlmFactory:
provider_to_class = {
"ollama": "mem0.llms.ollama.OllamaLLM",
"openai": "mem0.llms.openai.OpenAILLM",
"groq": "mem0.llms.groq.GroqLLM",
"together": "mem0.llms.together.TogetherLLM",
"aws_bedrock": "mem0.llms.aws_bedrock.AWSBedrockLLM",
"litellm": "mem0.llms.litellm.LiteLLM",
"azure_openai": "mem0.llms.azure_openai.AzureOpenAILLM",
"openai_structured": "mem0.llms.openai_structured.OpenAIStructuredLLM",
"anthropic": "mem0.llms.anthropic.AnthropicLLM",
"azure_openai_structured": "mem0.llms.azure_openai_structured.AzureOpenAIStructuredLLM",
}
@classmethod
def create(cls, provider_name, config):
class_type = cls.provider_to_class.get(provider_name)
if class_type:
llm_instance = load_class(class_type)
base_config = BaseLlmConfig(**config)
return llm_instance(base_config)
else:
raise ValueError(f"Unsupported Llm provider: {provider_name}")
class EmbedderFactory:
provider_to_class = {
"openai": "mem0.embeddings.openai.OpenAIEmbedding",
"ollama": "mem0.embeddings.ollama.OllamaEmbedding",
"huggingface": "mem0.embeddings.huggingface.HuggingFaceEmbedding",
"azure_openai": "mem0.embeddings.azure_openai.AzureOpenAIEmbedding",
}
@classmethod
def create(cls, provider_name, config):
class_type = cls.provider_to_class.get(provider_name)
if class_type:
embedder_instance = load_class(class_type)
base_config = BaseEmbedderConfig(**config)
return embedder_instance(base_config)
else:
raise ValueError(f"Unsupported Embedder provider: {provider_name}")
class VectorStoreFactory:
provider_to_class = {
"qdrant": "mem0.vector_stores.qdrant.Qdrant",
"chroma": "mem0.vector_stores.chroma.ChromaDB",
"pgvector": "mem0.vector_stores.pgvector.PGVector",
"milvus": "mem0.vector_stores.milvus.MilvusDB",
}
@classmethod
def create(cls, provider_name, config):
class_type = cls.provider_to_class.get(provider_name)
if class_type:
if not isinstance(config, dict):
config = config.model_dump()
vector_store_instance = load_class(class_type)
return vector_store_instance(**config)
else:
raise ValueError(f"Unsupported VectorStore provider: {provider_name}")