[improvement]: Graph nodes extraction improved (#2035)

This commit is contained in:
Mayank
2024-11-21 12:27:39 +05:30
committed by GitHub
parent 62ca0ddbe2
commit 4b8e32830a
4 changed files with 171 additions and 142 deletions

View File

@@ -82,11 +82,11 @@ NOOP_TOOL = {
}
ADD_MESSAGE_TOOL = {
RELATIONS_TOOL = {
"type": "function",
"function": {
"name": "add_query",
"description": "Add new entities and relationships to the graph based on the provided query.",
"name": "establish_relations",
"description": "Establish relationships among the entities based on the provided text.",
"parameters": {
"type": "object",
"properties": {
@@ -95,18 +95,23 @@ ADD_MESSAGE_TOOL = {
"items": {
"type": "object",
"properties": {
"source_node": {"type": "string"},
"source_type": {"type": "string"},
"relation": {"type": "string"},
"destination_node": {"type": "string"},
"destination_type": {"type": "string"},
"source": {
"type": "string",
"description": "The source entity of the relationship."
},
"relation": {
"type": "string",
"description": "The relationship between the source and destination entities."
},
"destination": {
"type": "string",
"description": "The destination entity of the relationship."
},
},
"required": [
"source_node",
"source_type",
"required": [
"source_entity",
"relation",
"destination_node",
"destination_type",
"destination_entity",
],
"additionalProperties": False,
},
@@ -119,29 +124,38 @@ ADD_MESSAGE_TOOL = {
}
SEARCH_TOOL = {
EXTRACT_ENTITIES_TOOL = {
"type": "function",
"function": {
"name": "search",
"description": "Search for nodes and relations in the graph.",
"name": "extract_entities",
"description": "Extract entities and their types from the text.",
"parameters": {
"type": "object",
"properties": {
"nodes": {
"entities": {
"type": "array",
"items": {"type": "string"},
"description": "List of nodes to search for.",
},
"relations": {
"type": "array",
"items": {"type": "string"},
"description": "List of relations to search for.",
},
"items": {
"type": "object",
"properties": {
"entity": {
"type": "string",
"description": "The name or identifier of the entity."
},
"entity_type": {
"type": "string",
"description": "The type or category of the entity."
}
},
"required": ["entity", "entity_type"],
"additionalProperties": False
},
"description": "An array of entities with their types."
}
},
"required": ["nodes", "relations"],
"additionalProperties": False,
},
},
"required": ["entities"],
"additionalProperties": False
}
}
}
UPDATE_MEMORY_STRUCT_TOOL_GRAPH = {
@@ -230,12 +244,11 @@ NOOP_STRUCT_TOOL = {
},
}
ADD_MESSAGE_STRUCT_TOOL = {
RELATIONS_STRUCT_TOOL = {
"type": "function",
"function": {
"name": "add_query",
"description": "Add new entities and relationships to the graph based on the provided query.",
"name": "establish_relations",
"description": "Establish relationships among the entities based on the provided text.",
"strict": True,
"parameters": {
"type": "object",
@@ -245,18 +258,23 @@ ADD_MESSAGE_STRUCT_TOOL = {
"items": {
"type": "object",
"properties": {
"source_node": {"type": "string"},
"source_type": {"type": "string"},
"relation": {"type": "string"},
"destination_node": {"type": "string"},
"destination_type": {"type": "string"},
"source_entity": {
"type": "string",
"description": "The source entity of the relationship."
},
"relation": {
"type": "string",
"description": "The relationship between the source and destination entities."
},
"destination_entity": {
"type": "string",
"description": "The destination entity of the relationship."
},
},
"required": [
"source_node",
"source_type",
"required": [
"source_entity",
"relation",
"destination_node",
"destination_type",
"destination_entity",
],
"additionalProperties": False,
},
@@ -269,28 +287,37 @@ ADD_MESSAGE_STRUCT_TOOL = {
}
SEARCH_STRUCT_TOOL = {
EXTRACT_ENTITIES_STRUCT_TOOL = {
"type": "function",
"function": {
"name": "search",
"description": "Search for nodes and relations in the graph.",
"name": "extract_entities",
"description": "Extract entities and their types from the text.",
"strict": True,
"parameters": {
"type": "object",
"properties": {
"nodes": {
"entities": {
"type": "array",
"items": {"type": "string"},
"description": "List of nodes to search for.",
},
"relations": {
"type": "array",
"items": {"type": "string"},
"description": "List of relations to search for.",
},
"items": {
"type": "object",
"properties": {
"entity": {
"type": "string",
"description": "The name or identifier of the entity."
},
"entity_type": {
"type": "string",
"description": "The type or category of the entity."
}
},
"required": ["entity", "entity_type"],
"additionalProperties": False
},
"description": "An array of entities with their types."
}
},
"required": ["nodes", "relations"],
"additionalProperties": False,
},
},
"required": ["entities"],
"additionalProperties": False
}
}
}

View File

@@ -18,50 +18,51 @@ Guidelines:
7. Relationship Refinement: Look for opportunities to refine relationship descriptions for greater precision or clarity.
8. Redundancy Elimination: Identify and merge any redundant or highly similar relationships that may result from the update.
Memory Format:
source -- RELATIONSHIP -- destination
Task Details:
- Existing Graph Memories:
======= Existing Graph Memories:=======
{existing_memories}
- New Graph Memory: {memory}
======= New Graph Memory:=======
{new_memories}
Output:
Provide a list of update instructions, each specifying the source, target, and the new relationship to be set. Only include memories that require updates.
"""
EXTRACT_ENTITIES_PROMPT = """
EXTRACT_RELATIONS_PROMPT = """
You are an advanced algorithm designed to extract structured information from text to construct knowledge graphs. Your goal is to capture comprehensive information while maintaining accuracy. Follow these key principles:
You are an advanced algorithm designed to extract structured information from text to construct knowledge graphs. Your goal is to capture comprehensive and accurate information. Follow these key principles:
1. Extract only explicitly stated information from the text.
2. Identify nodes (entities/concepts), their types, and relationships.
3. Use "USER_ID" as the source node for any self-references (I, me, my, etc.) in user messages.
2. Establish relationships among the entities provided.
3. Use "USER_ID" as the source entity for any self-references (e.g., "I," "me," "my," etc.) in user messages.
CUSTOM_PROMPT
Nodes and Types:
- Aim for simplicity and clarity in node representation.
- Use basic, general types for node labels (e.g. "person" instead of "mathematician").
Relationships:
- Use consistent, general, and timeless relationship types.
- Example: Prefer "PROFESSOR" over "BECAME_PROFESSOR".
- Use consistent, general, and timeless relationship types.
- Example: Prefer "PROFESSOR" over "BECAME_PROFESSOR."
- Relationships should only be established among the entities explicitly mentioned in the user message.
Entity Consistency:
- Use the most complete identifier for entities mentioned multiple times.
- Example: Always use "John Doe" instead of variations like "Joe" or pronouns.
- Ensure that relationships are coherent and logically align with the context of the message.
- Maintain consistent naming for entities across the extracted data.
Strive for a coherent, easily understandable knowledge graph by maintaining consistency in entity references and relationship types.
Strive to construct a coherent and easily understandable knowledge graph by eshtablishing all the relationships among the entities and adherence to the users context.
Adhere strictly to these guidelines to ensure high-quality knowledge graph extraction."""
def get_update_memory_prompt(existing_memories, memory, template):
return template.format(existing_memories=existing_memories, memory=memory)
def get_update_memory_prompt(existing_memories, new_memories, template):
return template.format(existing_memories=existing_memories, new_memories=new_memories)
def get_update_memory_messages(existing_memories, memory):
def get_update_memory_messages(existing_memories, new_memories):
return [
{
"role": "user",
"content": get_update_memory_prompt(existing_memories, memory, UPDATE_GRAPH_PROMPT),
"content": get_update_memory_prompt(existing_memories, new_memories, UPDATE_GRAPH_PROMPT),
},
]

View File

@@ -15,16 +15,16 @@ except ImportError:
from mem0.graphs.tools import (
ADD_MEMORY_STRUCT_TOOL_GRAPH,
ADD_MEMORY_TOOL_GRAPH,
ADD_MESSAGE_STRUCT_TOOL,
ADD_MESSAGE_TOOL,
EXTRACT_ENTITIES_STRUCT_TOOL,
EXTRACT_ENTITIES_TOOL,
NOOP_STRUCT_TOOL,
NOOP_TOOL,
SEARCH_STRUCT_TOOL,
SEARCH_TOOL,
RELATIONS_STRUCT_TOOL,
RELATIONS_TOOL,
UPDATE_MEMORY_STRUCT_TOOL_GRAPH,
UPDATE_MEMORY_TOOL_GRAPH,
)
from mem0.graphs.utils import EXTRACT_ENTITIES_PROMPT, get_update_memory_messages
from mem0.graphs.utils import EXTRACT_RELATIONS_PROMPT, get_update_memory_messages
from mem0.utils.factory import EmbedderFactory, LlmFactory
logger = logging.getLogger(__name__)
@@ -60,44 +60,14 @@ class MemoryGraph:
"""
# retrieve the search results
search_output = self._search(data, filters)
search_output, entity_type_map = self._search(data, filters)
if self.config.graph_store.custom_prompt:
messages = [
{
"role": "system",
"content": EXTRACT_ENTITIES_PROMPT.replace("USER_ID", self.user_id).replace(
"CUSTOM_PROMPT", f"4. {self.config.graph_store.custom_prompt}"
),
},
{"role": "user", "content": data},
]
else:
messages = [
{
"role": "system",
"content": EXTRACT_ENTITIES_PROMPT.replace("USER_ID", self.user_id),
},
{"role": "user", "content": data},
]
_tools = [ADD_MESSAGE_TOOL]
if self.llm_provider in ["azure_openai_structured", "openai_structured"]:
_tools = [ADD_MESSAGE_STRUCT_TOOL]
extracted_entities = self.llm.generate_response(
messages=messages,
tools=_tools,
)
if extracted_entities["tool_calls"]:
extracted_entities = extracted_entities["tool_calls"][0]["arguments"]["entities"]
else:
extracted_entities = []
logger.debug(f"Extracted entities: {extracted_entities}")
# extract relations
extracted_relations = self._extract_relations(data, filters, entity_type_map)
search_output_string = format_entities(search_output)
update_memory_prompt = get_update_memory_messages(search_output_string, extracted_entities)
extracted_relations_string = format_entities(extracted_relations)
update_memory_prompt = get_update_memory_messages(search_output_string, extracted_relations_string)
_tools = [UPDATE_MEMORY_TOOL_GRAPH, ADD_MEMORY_TOOL_GRAPH, NOOP_TOOL]
if self.llm_provider in ["azure_openai_structured", "openai_structured"]:
@@ -170,37 +140,33 @@ class MemoryGraph:
return returned_entities
def _search(self, query, filters, limit=100):
_tools = [SEARCH_TOOL]
_tools = [EXTRACT_ENTITIES_TOOL]
if self.llm_provider in ["azure_openai_structured", "openai_structured"]:
_tools = [SEARCH_STRUCT_TOOL]
_tools = [EXTRACT_ENTITIES_STRUCT_TOOL]
search_results = self.llm.generate_response(
messages=[
{
"role": "system",
"content": f"You are a smart assistant who understands the entities, their types, and relations in a given text. If user message contains self reference such as 'I', 'me', 'my' etc. then use {filters['user_id']} as the source node. Extract the entities. ***DO NOT*** answer the question itself if the given text is a question.",
"content": f"You are a smart assistant who understands entities and their types in a given text. If user message contains self reference such as 'I', 'me', 'my' etc. then use {filters['user_id']} as the source entity. Extract all the entities from the text. ***DO NOT*** answer the question itself if the given text is a question.",
},
{"role": "user", "content": query},
],
tools=_tools,
)
node_list = []
entity_type_map = {}
for item in search_results["tool_calls"]:
if item["name"] == "search":
try:
node_list.extend(item["arguments"]["nodes"])
except Exception as e:
logger.error(f"Error in search tool: {e}")
try:
for item in search_results["tool_calls"][0]["arguments"]["entities"]:
entity_type_map[item["entity"]] = item["entity_type"]
except Exception as e:
logger.error(f"Error in search tool: {e}")
node_list = list(set(node_list))
node_list = [node.lower().replace(" ", "_") for node in node_list]
logger.debug(f"Node list for search query : {node_list}")
logger.debug(f"Entity type map: {entity_type_map}")
result_relations = []
for node in node_list:
for node in list(entity_type_map.keys()):
n_embedding = self.embedding_model.embed(node)
cypher_query = """
@@ -235,7 +201,7 @@ class MemoryGraph:
ans = self.graph.query(cypher_query, params=params)
result_relations.extend(ans)
return result_relations
return result_relations, entity_type_map
def search(self, query, filters, limit=100):
"""
@@ -252,7 +218,7 @@ class MemoryGraph:
- "entities": List of related graph data based on the query.
"""
search_output = self._search(query, filters, limit)
search_output, entity_type_map = self._search(query, filters, limit)
if not search_output:
return []
@@ -314,6 +280,45 @@ class MemoryGraph:
return final_results
def _extract_relations(self, data, filters, entity_type_map, limit=100):
if self.config.graph_store.custom_prompt:
messages = [
{
"role": "system",
"content": EXTRACT_RELATIONS_PROMPT.replace("USER_ID", filters["user_id"]).replace(
"CUSTOM_PROMPT", f"4. {self.config.graph_store.custom_prompt}"
),
},
{"role": "user", "content": data},
]
else:
messages = [
{
"role": "system",
"content": EXTRACT_RELATIONS_PROMPT.replace("USER_ID", filters["user_id"]),
},
{"role": "user", "content": f"List of entities: {list(entity_type_map.keys())}. \n\nText: {data}"},
]
_tools = [RELATIONS_TOOL]
if self.llm_provider in ["azure_openai_structured", "openai_structured"]:
_tools = [RELATIONS_STRUCT_TOOL]
extracted_entities = self.llm.generate_response(
messages=messages,
tools=_tools,
)
if extracted_entities["tool_calls"]:
extracted_entities = extracted_entities["tool_calls"][0]["arguments"]["entities"]
else:
extracted_entities = []
logger.debug(f"Extracted entities: {extracted_entities}")
return extracted_entities
def _update_relationship(self, source, target, relationship, filters):
"""
Update or create a relationship between two nodes in the graph.

View File

@@ -24,11 +24,7 @@ def format_entities(entities):
formatted_lines = []
for entity in entities:
simplified = {
"source": entity["source"],
"relation": entity["relation"],
"destination": entity["destination"]
}
formatted_lines.append(json.dumps(simplified))
simplified = f"{entity['source']} -- {entity['relation'].upper()} -- {entity['destination']}"
formatted_lines.append(simplified)
return "\n".join(formatted_lines)