Add support for configurable embedding model (#1627)
Co-authored-by: Dev Khant <devkhant24@gmail.com>
This commit is contained in:
@@ -10,9 +10,10 @@ class BaseEmbedderConfig(ABC):
|
||||
self,
|
||||
model: Optional[str] = None,
|
||||
embedding_dims: Optional[int] = None,
|
||||
|
||||
# Ollama specific
|
||||
base_url: Optional[str] = None
|
||||
base_url: Optional[str] = None,
|
||||
# Huggingface specific
|
||||
model_kwargs: Optional[dict] = None
|
||||
):
|
||||
"""
|
||||
Initializes a configuration class instance for the Embeddings.
|
||||
@@ -23,10 +24,16 @@ class BaseEmbedderConfig(ABC):
|
||||
:type embedding_dims: Optional[int], optional
|
||||
:param base_url: Base URL for the Ollama API, defaults to None
|
||||
:type base_url: Optional[str], optional
|
||||
:param model_kwargs: key-value arguments for the huggingface embedding model, defaults a dict inside init
|
||||
:type model_kwargs: Optional[Dict[str, Any]], defaults a dict inside init
|
||||
|
||||
"""
|
||||
|
||||
self.model = model
|
||||
self.embedding_dims = embedding_dims
|
||||
|
||||
# Ollama specific
|
||||
self.base_url = base_url
|
||||
self.base_url = base_url
|
||||
|
||||
# Huggingface specific
|
||||
self.model_kwargs = model_kwargs or {}
|
||||
|
||||
36
mem0/embeddings/azure_openai.py
Normal file
36
mem0/embeddings/azure_openai.py
Normal file
@@ -0,0 +1,36 @@
|
||||
from typing import Optional
|
||||
|
||||
from openai import AzureOpenAI
|
||||
|
||||
from mem0.configs.embeddings.base import BaseEmbedderConfig
|
||||
from mem0.embeddings.base import EmbeddingBase
|
||||
|
||||
class AzureOpenAIEmbedding(EmbeddingBase):
|
||||
def __init__(self, config: Optional[BaseEmbedderConfig] = None):
|
||||
super().__init__(config)
|
||||
|
||||
if self.config.model is None:
|
||||
self.config.model = "text-embedding-3-small"
|
||||
if self.config.embedding_dims is None:
|
||||
self.config.embedding_dims = 1536
|
||||
self.client = AzureOpenAI()
|
||||
|
||||
def embed(self, text):
|
||||
"""
|
||||
Get the embedding for the given text using OpenAI.
|
||||
|
||||
Args:
|
||||
text (str): The text to embed.
|
||||
|
||||
Returns:
|
||||
list: The embedding vector.
|
||||
"""
|
||||
text = text.replace("\n", " ")
|
||||
return (
|
||||
self.client.embeddings.create(
|
||||
input=[text],
|
||||
model=self.config.model
|
||||
)
|
||||
.data[0]
|
||||
.embedding
|
||||
)
|
||||
@@ -3,19 +3,18 @@ from abc import ABC, abstractmethod
|
||||
|
||||
from mem0.configs.embeddings.base import BaseEmbedderConfig
|
||||
|
||||
|
||||
class EmbeddingBase(ABC):
|
||||
def __init__(self, config: Optional[BaseEmbedderConfig] = None):
|
||||
"""Initialize a base LLM class
|
||||
"""Initialized a base embedding class
|
||||
|
||||
:param config: Embedder configuration option class, defaults to None
|
||||
:type config: Optional[BaseEmbedderConfig], optional
|
||||
"""
|
||||
:param config: Embedding configuration option class, defaults to None
|
||||
:type config: Optional[BaseEmbedderConfig], optional
|
||||
"""
|
||||
def __init__(self, config: Optional[BaseEmbedderConfig] = None):
|
||||
if config is None:
|
||||
self.config = BaseEmbedderConfig()
|
||||
else:
|
||||
self.config = config
|
||||
|
||||
|
||||
@abstractmethod
|
||||
def embed(self, text):
|
||||
"""
|
||||
|
||||
@@ -9,13 +9,14 @@ class EmbedderConfig(BaseModel):
|
||||
default="openai",
|
||||
)
|
||||
config: Optional[dict] = Field(
|
||||
description="Configuration for the specific embedding model", default=None
|
||||
description="Configuration for the specific embedding model",
|
||||
default={}
|
||||
)
|
||||
|
||||
@field_validator("config")
|
||||
def validate_config(cls, v, values):
|
||||
provider = values.data.get("provider")
|
||||
if provider in ["openai", "ollama"]:
|
||||
if provider in ["openai", "ollama", "huggingface", "azure_openai"]:
|
||||
return v
|
||||
else:
|
||||
raise ValueError(f"Unsupported embedding provider: {provider}")
|
||||
|
||||
@@ -1,11 +1,27 @@
|
||||
from mem0.embeddings.base import EmbeddingBase
|
||||
from typing import Optional
|
||||
|
||||
from sentence_transformers import SentenceTransformer
|
||||
|
||||
from mem0.configs.embeddings.base import BaseEmbedderConfig
|
||||
from mem0.embeddings.base import EmbeddingBase
|
||||
|
||||
|
||||
class HuggingFaceEmbedding(EmbeddingBase):
|
||||
def __init__(self, model_name="multi-qa-MiniLM-L6-cos-v1"):
|
||||
self.model = SentenceTransformer(model_name)
|
||||
def __init__(self, config: Optional[BaseEmbedderConfig] = None):
|
||||
super().__init__(config)
|
||||
|
||||
if self.config.model is None:
|
||||
self.config.model = "multi-qa-MiniLM-L6-cos-v1"
|
||||
|
||||
self.model = SentenceTransformer(
|
||||
self.config.model,
|
||||
**self.config.model_kwargs
|
||||
)
|
||||
|
||||
if self.config.embedding_dims is None:
|
||||
self.config.embedding_dims = self.model.get_sentence_embedding_dimension()
|
||||
|
||||
|
||||
def embed(self, text):
|
||||
"""
|
||||
Get the embedding for the given text using Hugging Face.
|
||||
|
||||
@@ -1,10 +1,10 @@
|
||||
from typing import Optional
|
||||
|
||||
from openai import OpenAI
|
||||
|
||||
from mem0.configs.embeddings.base import BaseEmbedderConfig
|
||||
from mem0.embeddings.base import EmbeddingBase
|
||||
|
||||
|
||||
class OpenAIEmbedding(EmbeddingBase):
|
||||
def __init__(self, config: Optional[BaseEmbedderConfig] = None):
|
||||
super().__init__(config)
|
||||
@@ -28,7 +28,10 @@ class OpenAIEmbedding(EmbeddingBase):
|
||||
"""
|
||||
text = text.replace("\n", " ")
|
||||
return (
|
||||
self.client.embeddings.create(input=[text], model=self.config.model)
|
||||
self.client.embeddings.create(
|
||||
input=[text],
|
||||
model=self.config.model
|
||||
)
|
||||
.data[0]
|
||||
.embedding
|
||||
)
|
||||
|
||||
@@ -28,7 +28,7 @@ setup_config()
|
||||
class Memory(MemoryBase):
|
||||
def __init__(self, config: MemoryConfig = MemoryConfig()):
|
||||
self.config = config
|
||||
self.embedding_model = EmbedderFactory.create(self.config.embedder.provider)
|
||||
self.embedding_model = EmbedderFactory.create(self.config.embedder.provider, self.config.embedder.config)
|
||||
self.vector_store = VectorStoreFactory.create(self.config.vector_store.provider, self.config.vector_store.config)
|
||||
self.llm = LlmFactory.create(self.config.llm.provider, self.config.llm.config)
|
||||
self.db = SQLiteManager(self.config.history_db_path)
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
import importlib
|
||||
|
||||
from mem0.configs.llms.base import BaseLlmConfig
|
||||
|
||||
from mem0.configs.embeddings.base import BaseEmbedderConfig
|
||||
|
||||
def load_class(class_type):
|
||||
module_path, class_name = class_type.rsplit(".", 1)
|
||||
@@ -33,15 +33,18 @@ class LlmFactory:
|
||||
class EmbedderFactory:
|
||||
provider_to_class = {
|
||||
"openai": "mem0.embeddings.openai.OpenAIEmbedding",
|
||||
"ollama": "mem0.embeddings.ollama.OllamaEmbedding"
|
||||
"ollama": "mem0.embeddings.ollama.OllamaEmbedding",
|
||||
"huggingface": "mem0.embeddings.huggingface.HuggingFaceEmbedding",
|
||||
"azure_openai": "mem0.embeddings.azure_openai.AzureOpenAIEmbedding",
|
||||
}
|
||||
|
||||
@classmethod
|
||||
def create(cls, provider_name):
|
||||
def create(cls, provider_name, config):
|
||||
class_type = cls.provider_to_class.get(provider_name)
|
||||
if class_type:
|
||||
embedder_instance = load_class(class_type)()
|
||||
return embedder_instance
|
||||
embedder_instance = load_class(class_type)
|
||||
base_config = BaseEmbedderConfig(**config)
|
||||
return embedder_instance(base_config)
|
||||
else:
|
||||
raise ValueError(f"Unsupported Embedder provider: {provider_name}")
|
||||
|
||||
|
||||
Reference in New Issue
Block a user