Fix: Migrate Gemini Embeddings (#3002)

Co-authored-by: Dev-Khant <devkhant24@gmail.com>
This commit is contained in:
Akshat Jain
2025-06-23 13:16:10 +05:30
committed by GitHub
parent c173ec32d0
commit 386d8b87ae
5 changed files with 124 additions and 71 deletions

View File

@@ -1,7 +1,7 @@
import os
from typing import Literal, Optional
import google.generativeai as genai
import google.genai as genai
from mem0.configs.embeddings.base import BaseEmbedderConfig
from mem0.embeddings.base import EmbeddingBase
@@ -12,23 +12,28 @@ class GoogleGenAIEmbedding(EmbeddingBase):
super().__init__(config)
self.config.model = self.config.model or "models/text-embedding-004"
self.config.embedding_dims = self.config.embedding_dims or 768
self.config.embedding_dims = self.config.embedding_dims or self.config.output_dimensionality or 768
api_key = self.config.api_key or os.getenv("GOOGLE_API_KEY")
genai.configure(api_key=api_key)
if api_key:
self.client = genai.Client(api_key="api_key")
else:
self.client = genai.Client()
def embed(self, text, memory_action: Optional[Literal["add", "search", "update"]] = None):
"""
Get the embedding for the given text using Google Generative AI.
Args:
text (str): The text to embed.
memory_action (optional): The type of embedding to use. Must be one of "add", "search", or "update". Defaults to None.
memory_action (optional): The type of embedding to use. (Currently not used by Gemini for task_type)
Returns:
list: The embedding vector.
"""
text = text.replace("\n", " ")
response = genai.embed_content(
response = self.client.models.embed_content(
model=self.config.model, content=text, output_dimensionality=self.config.embedding_dims
)
return response["embedding"]

View File

@@ -4,7 +4,7 @@ from typing import Dict, List, Optional
try:
from google import genai
from google.genai import types
except ImportError:
raise ImportError(
"The 'google-generativeai' library is required. Please install it using 'pip install google-generativeai'."
@@ -49,16 +49,17 @@ class GeminiLLM(LLMBase):
for part in candidate.content.parts:
fn = getattr(part, "function_call", None)
if fn:
processed_response["tool_calls"].append({
"name": fn.name,
"arguments": fn.args,
})
processed_response["tool_calls"].append(
{
"name": fn.name,
"arguments": fn.args,
}
)
return processed_response
return content
def _reformat_messages(self, messages: List[Dict[str, str]]) -> List[types.Content]:
"""
Reformat messages for Gemini using google.genai.types.
@@ -78,15 +79,11 @@ class GeminiLLM(LLMBase):
content = message["content"]
new_messages.append(
types.Content(
role="model" if message["role"] == "model" else "user",
parts=[types.Part(text=content)]
)
types.Content(role="model" if message["role"] == "model" else "user", parts=[types.Part(text=content)])
)
return new_messages
def _reformat_tools(self, tools: Optional[List[Dict]]):
"""
Reformat tools for Gemini.
@@ -131,7 +128,6 @@ class GeminiLLM(LLMBase):
tools: Optional[List[Dict]] = None,
tool_choice: str = "auto",
):
"""
Generate a response based on the given messages using Gemini.
@@ -161,31 +157,22 @@ class GeminiLLM(LLMBase):
tool_config = types.ToolConfig(
function_calling_config=types.FunctionCallingConfig(
mode=tool_choice.upper(), # Assuming 'any' should become 'ANY', etc.
allowed_function_names=[
tool["function"]["name"] for tool in tools
] if tool_choice == "any" else None
allowed_function_names=[tool["function"]["name"] for tool in tools]
if tool_choice == "any"
else None,
)
)
print(f"Tool config: {tool_config}")
print(f"Params: {params}" )
print(f"Messages: {messages}")
print(f"Tools: {tools}")
print(f"Reformatted messages: {self._reformat_messages(messages)}")
print(f"Reformatted tools: {self._reformat_tools(tools)}")
response = self.client_gemini.models.generate_content(
model=self.config.model,
contents=self._reformat_messages(messages),
config=types.GenerateContentConfig(
temperature= self.config.temperature,
max_output_tokens= self.config.max_tokens,
top_p= self.config.top_p,
tools=self._reformat_tools(tools),
tool_config=tool_config,
),
)
print(f"Response test: {response}")
model=self.config.model,
contents=self._reformat_messages(messages),
config=types.GenerateContentConfig(
temperature=self.config.temperature,
max_output_tokens=self.config.max_tokens,
top_p=self.config.top_p,
tools=self._reformat_tools(tools),
tool_config=tool_config,
),
)
return self._parse_response(response, tools)