Fix user_id functionality (#2548)
This commit is contained in:
@@ -1,6 +1,7 @@
|
||||
import logging
|
||||
import os
|
||||
import warnings
|
||||
import hashlib
|
||||
from functools import wraps
|
||||
from typing import Any, Dict, List, Optional, Union
|
||||
|
||||
@@ -83,6 +84,9 @@ class MemoryClient:
|
||||
if not self.api_key:
|
||||
raise ValueError("Mem0 API Key not provided. Please provide an API Key.")
|
||||
|
||||
# Create MD5 hash of API key for user_id
|
||||
self.user_id = hashlib.md5(self.api_key.encode()).hexdigest()
|
||||
|
||||
self.client = httpx.Client(
|
||||
base_url=self.host,
|
||||
headers={"Authorization": f"Token {self.api_key}", "Mem0-User-ID": self.user_id},
|
||||
|
||||
@@ -6,9 +6,12 @@ from pydantic import BaseModel, Field
|
||||
from mem0.embeddings.configs import EmbedderConfig
|
||||
from mem0.graphs.configs import GraphStoreConfig
|
||||
from mem0.llms.configs import LlmConfig
|
||||
from mem0.memory.setup import mem0_dir
|
||||
from mem0.vector_stores.configs import VectorStoreConfig
|
||||
|
||||
# Set up the directory path
|
||||
home_dir = os.path.expanduser("~")
|
||||
mem0_dir = os.environ.get("MEM0_DIR") or os.path.join(home_dir, ".mem0")
|
||||
|
||||
|
||||
class MemoryItem(BaseModel):
|
||||
id: str = Field(..., description="The unique identifier for the text data")
|
||||
|
||||
@@ -7,7 +7,7 @@ class AzureAISearchConfig(BaseModel):
|
||||
collection_name: str = Field("mem0", description="Name of the collection")
|
||||
service_name: str = Field(None, description="Azure AI Search service name")
|
||||
api_key: str = Field(None, description="API key for the Azure AI Search service")
|
||||
embedding_model_dims: int = Field(None, description="Dimension of the embedding vector")
|
||||
embedding_model_dims: int = Field(1536, description="Dimension of the embedding vector")
|
||||
compression_type: Optional[str] = Field(
|
||||
None, description="Type of vector compression to use. Options: 'scalar', 'binary', or None"
|
||||
)
|
||||
|
||||
@@ -7,7 +7,9 @@ class LangchainConfig(BaseModel):
|
||||
try:
|
||||
from langchain_community.vectorstores import VectorStore
|
||||
except ImportError:
|
||||
raise ImportError("The 'langchain_community' library is required. Please install it using 'pip install langchain_community'.")
|
||||
raise ImportError(
|
||||
"The 'langchain_community' library is required. Please install it using 'pip install langchain_community'."
|
||||
)
|
||||
VectorStore: ClassVar[type] = VectorStore
|
||||
|
||||
client: VectorStore = Field(description="Existing VectorStore instance")
|
||||
|
||||
@@ -35,9 +35,7 @@ class MemoryGraph:
|
||||
self.config.graph_store.config.password,
|
||||
)
|
||||
self.embedding_model = EmbedderFactory.create(
|
||||
self.config.embedder.provider,
|
||||
self.config.embedder.config,
|
||||
self.config.vector_store.config
|
||||
self.config.embedder.provider, self.config.embedder.config, self.config.vector_store.config
|
||||
)
|
||||
|
||||
self.llm_provider = "openai_structured"
|
||||
|
||||
@@ -1,3 +1,4 @@
|
||||
import os
|
||||
import asyncio
|
||||
import concurrent
|
||||
import hashlib
|
||||
@@ -18,7 +19,7 @@ from mem0.configs.prompts import (
|
||||
get_update_memory_messages,
|
||||
)
|
||||
from mem0.memory.base import MemoryBase
|
||||
from mem0.memory.setup import setup_config
|
||||
from mem0.memory.setup import setup_config, mem0_dir
|
||||
from mem0.memory.storage import SQLiteManager
|
||||
from mem0.memory.telemetry import capture_event
|
||||
from mem0.memory.utils import (
|
||||
@@ -62,6 +63,16 @@ class Memory(MemoryBase):
|
||||
self.graph = MemoryGraph(self.config)
|
||||
self.enable_graph = True
|
||||
|
||||
self.config.vector_store.config.collection_name = "mem0_migrations"
|
||||
if self.config.vector_store.provider in ["faiss", "qdrant"]:
|
||||
provider_path = f"migrations_{self.config.vector_store.provider}"
|
||||
self.config.vector_store.config.path = os.path.join(mem0_dir, provider_path)
|
||||
os.makedirs(self.config.vector_store.config.path, exist_ok=True)
|
||||
|
||||
self._telemetry_vector_store = VectorStoreFactory.create(
|
||||
self.config.vector_store.provider, self.config.vector_store.config
|
||||
)
|
||||
|
||||
capture_event("mem0.init", self, {"sync_type": "sync"})
|
||||
|
||||
@classmethod
|
||||
|
||||
@@ -3,6 +3,7 @@ import os
|
||||
import uuid
|
||||
|
||||
# Set up the directory path
|
||||
VECTOR_ID = str(uuid.uuid4())
|
||||
home_dir = os.path.expanduser("~")
|
||||
mem0_dir = os.environ.get("MEM0_DIR") or os.path.join(home_dir, ".mem0")
|
||||
os.makedirs(mem0_dir, exist_ok=True)
|
||||
@@ -29,3 +30,27 @@ def get_user_id():
|
||||
return user_id
|
||||
except Exception:
|
||||
return "anonymous_user"
|
||||
|
||||
|
||||
def get_or_create_user_id(vector_store):
|
||||
"""Store user_id in vector store and return it."""
|
||||
user_id = get_user_id()
|
||||
|
||||
# Try to get existing user_id from vector store
|
||||
try:
|
||||
existing = vector_store.get(vector_id=VECTOR_ID)
|
||||
if existing and hasattr(existing, "payload") and existing.payload and "user_id" in existing.payload:
|
||||
return existing.payload["user_id"]
|
||||
except:
|
||||
pass
|
||||
|
||||
# If we get here, we need to insert the user_id
|
||||
try:
|
||||
dims = getattr(vector_store, "embedding_model_dims", 1)
|
||||
vector_store.insert(
|
||||
vectors=[[0.0] * dims], payloads=[{"user_id": user_id, "type": "user_identity"}], ids=[VECTOR_ID]
|
||||
)
|
||||
except:
|
||||
pass
|
||||
|
||||
return user_id
|
||||
|
||||
@@ -6,9 +6,11 @@ import sys
|
||||
from posthog import Posthog
|
||||
|
||||
import mem0
|
||||
from mem0.memory.setup import get_user_id, setup_config
|
||||
from mem0.memory.setup import get_or_create_user_id
|
||||
|
||||
MEM0_TELEMETRY = os.environ.get("MEM0_TELEMETRY", "True")
|
||||
PROJECT_API_KEY="phc_hgJkUVJFYtmaJqrvf6CYN67TIQ8yhXAkWzUn9AMU4yX"
|
||||
HOST="https://us.i.posthog.com"
|
||||
|
||||
if isinstance(MEM0_TELEMETRY, str):
|
||||
MEM0_TELEMETRY = MEM0_TELEMETRY.lower() in ("true", "1", "yes")
|
||||
@@ -21,11 +23,11 @@ logging.getLogger("urllib3").setLevel(logging.CRITICAL + 1)
|
||||
|
||||
|
||||
class AnonymousTelemetry:
|
||||
def __init__(self, project_api_key, host):
|
||||
self.posthog = Posthog(project_api_key=project_api_key, host=host)
|
||||
# Call setup config to ensure that the user_id is generated
|
||||
setup_config()
|
||||
self.user_id = get_user_id()
|
||||
def __init__(self, vector_store=None):
|
||||
self.posthog = Posthog(project_api_key=PROJECT_API_KEY, host=HOST)
|
||||
|
||||
self.user_id = get_or_create_user_id(vector_store)
|
||||
|
||||
if not MEM0_TELEMETRY:
|
||||
self.posthog.disabled = True
|
||||
|
||||
@@ -50,14 +52,16 @@ class AnonymousTelemetry:
|
||||
self.posthog.shutdown()
|
||||
|
||||
|
||||
# Initialize AnonymousTelemetry
|
||||
telemetry = AnonymousTelemetry(
|
||||
project_api_key="phc_hgJkUVJFYtmaJqrvf6CYN67TIQ8yhXAkWzUn9AMU4yX",
|
||||
host="https://us.i.posthog.com",
|
||||
)
|
||||
client_telemetry = AnonymousTelemetry()
|
||||
|
||||
|
||||
def capture_event(event_name, memory_instance, additional_data=None):
|
||||
oss_telemetry = AnonymousTelemetry(
|
||||
vector_store=memory_instance._telemetry_vector_store
|
||||
if hasattr(memory_instance, "_telemetry_vector_store")
|
||||
else None,
|
||||
)
|
||||
|
||||
event_data = {
|
||||
"collection": memory_instance.collection_name,
|
||||
"vector_size": memory_instance.embedding_model.config.embedding_dims,
|
||||
@@ -73,7 +77,7 @@ def capture_event(event_name, memory_instance, additional_data=None):
|
||||
if additional_data:
|
||||
event_data.update(additional_data)
|
||||
|
||||
telemetry.capture_event(event_name, event_data)
|
||||
oss_telemetry.capture_event(event_name, event_data)
|
||||
|
||||
|
||||
def capture_client_event(event_name, instance, additional_data=None):
|
||||
@@ -83,4 +87,4 @@ def capture_client_event(event_name, instance, additional_data=None):
|
||||
if additional_data:
|
||||
event_data.update(additional_data)
|
||||
|
||||
telemetry.capture_event(event_name, event_data, instance.user_email)
|
||||
client_telemetry.capture_event(event_name, event_data, instance.user_email)
|
||||
|
||||
@@ -5,7 +5,9 @@ from pydantic import BaseModel
|
||||
try:
|
||||
from langchain_community.vectorstores import VectorStore
|
||||
except ImportError:
|
||||
raise ImportError("The 'langchain_community' library is required. Please install it using 'pip install langchain_community'.")
|
||||
raise ImportError(
|
||||
"The 'langchain_community' library is required. Please install it using 'pip install langchain_community'."
|
||||
)
|
||||
|
||||
from mem0.vector_stores.base import VectorStoreBase
|
||||
|
||||
@@ -15,11 +17,12 @@ class OutputData(BaseModel):
|
||||
score: Optional[float] # distance
|
||||
payload: Optional[Dict] # metadata
|
||||
|
||||
|
||||
class Langchain(VectorStoreBase):
|
||||
def __init__(self, client: VectorStore, collection_name: str = "mem0"):
|
||||
self.client = client
|
||||
self.collection_name = collection_name
|
||||
|
||||
|
||||
def _parse_output(self, data: Dict) -> List[OutputData]:
|
||||
"""
|
||||
Parse the output data.
|
||||
@@ -31,17 +34,17 @@ class Langchain(VectorStoreBase):
|
||||
List[OutputData]: Parsed output data.
|
||||
"""
|
||||
# Check if input is a list of Document objects
|
||||
if isinstance(data, list) and all(hasattr(doc, 'metadata') for doc in data if hasattr(doc, '__dict__')):
|
||||
if isinstance(data, list) and all(hasattr(doc, "metadata") for doc in data if hasattr(doc, "__dict__")):
|
||||
result = []
|
||||
for doc in data:
|
||||
entry = OutputData(
|
||||
id=getattr(doc, "id", None),
|
||||
score=None, # Document objects typically don't include scores
|
||||
payload=getattr(doc, "metadata", {})
|
||||
payload=getattr(doc, "metadata", {}),
|
||||
)
|
||||
result.append(entry)
|
||||
return result
|
||||
|
||||
|
||||
# Original format handling
|
||||
keys = ["ids", "distances", "metadatas"]
|
||||
values = []
|
||||
@@ -70,26 +73,20 @@ class Langchain(VectorStoreBase):
|
||||
self.collection_name = name
|
||||
return self.client
|
||||
|
||||
def insert(self, vectors: List[List[float]], payloads: Optional[List[Dict]] = None, ids: Optional[List[str]] = None):
|
||||
def insert(
|
||||
self, vectors: List[List[float]], payloads: Optional[List[Dict]] = None, ids: Optional[List[str]] = None
|
||||
):
|
||||
"""
|
||||
Insert vectors into the LangChain vectorstore.
|
||||
"""
|
||||
# Check if client has add_embeddings method
|
||||
if hasattr(self.client, "add_embeddings"):
|
||||
# Some LangChain vectorstores have a direct add_embeddings method
|
||||
self.client.add_embeddings(
|
||||
embeddings=vectors,
|
||||
metadatas=payloads,
|
||||
ids=ids
|
||||
)
|
||||
self.client.add_embeddings(embeddings=vectors, metadatas=payloads, ids=ids)
|
||||
else:
|
||||
# Fallback to add_texts method
|
||||
texts = [payload.get("data", "") for payload in payloads] if payloads else [""] * len(vectors)
|
||||
self.client.add_texts(
|
||||
texts=texts,
|
||||
metadatas=payloads,
|
||||
ids=ids
|
||||
)
|
||||
self.client.add_texts(texts=texts, metadatas=payloads, ids=ids)
|
||||
|
||||
def search(self, query: str, vectors: List[List[float]], limit: int = 5, filters: Optional[Dict] = None):
|
||||
"""
|
||||
@@ -97,16 +94,9 @@ class Langchain(VectorStoreBase):
|
||||
"""
|
||||
# For each vector, perform a similarity search
|
||||
if filters:
|
||||
results = self.client.similarity_search_by_vector(
|
||||
embedding=vectors,
|
||||
k=limit,
|
||||
filter=filters
|
||||
)
|
||||
results = self.client.similarity_search_by_vector(embedding=vectors, k=limit, filter=filters)
|
||||
else:
|
||||
results = self.client.similarity_search_by_vector(
|
||||
embedding=vectors,
|
||||
k=limit
|
||||
)
|
||||
results = self.client.similarity_search_by_vector(embedding=vectors, k=limit)
|
||||
|
||||
final_results = self._parse_output(results)
|
||||
return final_results
|
||||
@@ -133,26 +123,26 @@ class Langchain(VectorStoreBase):
|
||||
doc = docs[0]
|
||||
return self._parse_output([doc])[0]
|
||||
return None
|
||||
|
||||
|
||||
def list_cols(self):
|
||||
"""
|
||||
List all collections.
|
||||
"""
|
||||
# LangChain doesn't have collections
|
||||
return [self.collection_name]
|
||||
|
||||
|
||||
def delete_col(self):
|
||||
"""
|
||||
Delete a collection.
|
||||
"""
|
||||
self.client.delete(ids=None)
|
||||
|
||||
|
||||
def col_info(self):
|
||||
"""
|
||||
Get information about a collection.
|
||||
"""
|
||||
return {"name": self.collection_name}
|
||||
|
||||
|
||||
def list(self, filters=None, limit=None):
|
||||
"""
|
||||
List all vectors in a collection.
|
||||
|
||||
Reference in New Issue
Block a user