[Bugfix] fix qdrant and weaviate db integration (#1181)

Co-authored-by: Deven Patel <deven298@yahoo.com>
This commit is contained in:
Deven Patel
2024-01-23 14:24:29 +05:30
committed by GitHub
parent 22e14b5e65
commit 2d9fbd4e49
3 changed files with 131 additions and 44 deletions

View File

@@ -11,6 +11,8 @@ try:
except ImportError:
raise ImportError("Qdrant requires extra dependencies. Install with `pip install embedchain[qdrant]`") from None
from tqdm import tqdm
from embedchain.config.vectordb.qdrant import QdrantDBConfig
from embedchain.vectordb.base import BaseVectorDB
@@ -48,7 +50,6 @@ class QdrantDB(BaseVectorDB):
raise ValueError("Embedder not set. Please set an embedder with `set_embedder` before initialization.")
self.collection_name = self._get_or_create_collection()
self.metadata_keys = {"data_type", "doc_id", "url", "hash", "app_id", "text"}
all_collections = self.client.get_collections()
collection_names = [collection.name for collection in all_collections.collections]
if self.collection_name not in collection_names:
@@ -82,21 +83,23 @@ class QdrantDB(BaseVectorDB):
:return: All the existing IDs
:rtype: Set[str]
"""
if ids is None or len(ids) == 0:
return {"ids": []}
keys = set(where.keys() if where is not None else set())
qdrant_must_filters = [
models.FieldCondition(
key="identifier",
match=models.MatchAny(
any=ids,
),
qdrant_must_filters = []
if ids:
qdrant_must_filters.append(
models.FieldCondition(
key="identifier",
match=models.MatchAny(
any=ids,
),
)
)
]
if len(keys.intersection(self.metadata_keys)) != 0:
for key in keys.intersection(self.metadata_keys):
if len(keys) > 0:
for key in keys:
qdrant_must_filters.append(
models.FieldCondition(
key="metadata.{}".format(key),
@@ -108,6 +111,7 @@ class QdrantDB(BaseVectorDB):
offset = 0
existing_ids = []
metadatas = []
while offset is not None:
response = self.client.scroll(
collection_name=self.collection_name,
@@ -118,7 +122,8 @@ class QdrantDB(BaseVectorDB):
offset = response[1]
for doc in response[0]:
existing_ids.append(doc.payload["identifier"])
return {"ids": existing_ids}
metadatas.append(doc.payload["metadata"])
return {"ids": existing_ids, "metadatas": metadatas}
def add(
self,
@@ -143,7 +148,8 @@ class QdrantDB(BaseVectorDB):
metadata["text"] = document
qdrant_ids.append(str(uuid.uuid4()))
payloads.append({"identifier": id, "text": document, "metadata": copy.deepcopy(metadata)})
for i in range(0, len(qdrant_ids), self.BATCH_SIZE):
for i in tqdm(range(0, len(qdrant_ids), self.BATCH_SIZE), desc="Adding data in batches"):
self.client.upsert(
collection_name=self.collection_name,
points=Batch(
@@ -180,16 +186,17 @@ class QdrantDB(BaseVectorDB):
keys = set(where.keys() if where is not None else set())
qdrant_must_filters = []
if len(keys.intersection(self.metadata_keys)) != 0:
for key in keys.intersection(self.metadata_keys):
if len(keys) > 0:
for key in keys:
qdrant_must_filters.append(
models.FieldCondition(
key="payload.metadata.{}".format(key),
key="metadata.{}".format(key),
match=models.MatchValue(
value=where.get(key),
),
)
)
results = self.client.search(
collection_name=self.collection_name,
query_filter=models.Filter(must=qdrant_must_filters),
@@ -228,3 +235,21 @@ class QdrantDB(BaseVectorDB):
raise TypeError("Collection name must be a string")
self.config.collection_name = name
self.collection_name = self._get_or_create_collection()
@staticmethod
def _generate_query(where: dict):
must_fields = []
for key, value in where.items():
must_fields.append(
models.FieldCondition(
key=f"metadata.{key}",
match=models.MatchValue(
value=value,
),
)
)
return models.Filter(must=must_fields)
def delete(self, where: dict):
db_filter = self._generate_query(where)
self.client.delete(collection_name=self.collection_name, points_selector=db_filter)