[Bugfix] fix qdrant and weaviate db integration (#1181)
Co-authored-by: Deven Patel <deven298@yahoo.com>
This commit is contained in:
@@ -11,6 +11,8 @@ try:
|
||||
except ImportError:
|
||||
raise ImportError("Qdrant requires extra dependencies. Install with `pip install embedchain[qdrant]`") from None
|
||||
|
||||
from tqdm import tqdm
|
||||
|
||||
from embedchain.config.vectordb.qdrant import QdrantDBConfig
|
||||
from embedchain.vectordb.base import BaseVectorDB
|
||||
|
||||
@@ -48,7 +50,6 @@ class QdrantDB(BaseVectorDB):
|
||||
raise ValueError("Embedder not set. Please set an embedder with `set_embedder` before initialization.")
|
||||
|
||||
self.collection_name = self._get_or_create_collection()
|
||||
self.metadata_keys = {"data_type", "doc_id", "url", "hash", "app_id", "text"}
|
||||
all_collections = self.client.get_collections()
|
||||
collection_names = [collection.name for collection in all_collections.collections]
|
||||
if self.collection_name not in collection_names:
|
||||
@@ -82,21 +83,23 @@ class QdrantDB(BaseVectorDB):
|
||||
:return: All the existing IDs
|
||||
:rtype: Set[str]
|
||||
"""
|
||||
if ids is None or len(ids) == 0:
|
||||
return {"ids": []}
|
||||
|
||||
keys = set(where.keys() if where is not None else set())
|
||||
|
||||
qdrant_must_filters = [
|
||||
models.FieldCondition(
|
||||
key="identifier",
|
||||
match=models.MatchAny(
|
||||
any=ids,
|
||||
),
|
||||
qdrant_must_filters = []
|
||||
|
||||
if ids:
|
||||
qdrant_must_filters.append(
|
||||
models.FieldCondition(
|
||||
key="identifier",
|
||||
match=models.MatchAny(
|
||||
any=ids,
|
||||
),
|
||||
)
|
||||
)
|
||||
]
|
||||
if len(keys.intersection(self.metadata_keys)) != 0:
|
||||
for key in keys.intersection(self.metadata_keys):
|
||||
|
||||
if len(keys) > 0:
|
||||
for key in keys:
|
||||
qdrant_must_filters.append(
|
||||
models.FieldCondition(
|
||||
key="metadata.{}".format(key),
|
||||
@@ -108,6 +111,7 @@ class QdrantDB(BaseVectorDB):
|
||||
|
||||
offset = 0
|
||||
existing_ids = []
|
||||
metadatas = []
|
||||
while offset is not None:
|
||||
response = self.client.scroll(
|
||||
collection_name=self.collection_name,
|
||||
@@ -118,7 +122,8 @@ class QdrantDB(BaseVectorDB):
|
||||
offset = response[1]
|
||||
for doc in response[0]:
|
||||
existing_ids.append(doc.payload["identifier"])
|
||||
return {"ids": existing_ids}
|
||||
metadatas.append(doc.payload["metadata"])
|
||||
return {"ids": existing_ids, "metadatas": metadatas}
|
||||
|
||||
def add(
|
||||
self,
|
||||
@@ -143,7 +148,8 @@ class QdrantDB(BaseVectorDB):
|
||||
metadata["text"] = document
|
||||
qdrant_ids.append(str(uuid.uuid4()))
|
||||
payloads.append({"identifier": id, "text": document, "metadata": copy.deepcopy(metadata)})
|
||||
for i in range(0, len(qdrant_ids), self.BATCH_SIZE):
|
||||
|
||||
for i in tqdm(range(0, len(qdrant_ids), self.BATCH_SIZE), desc="Adding data in batches"):
|
||||
self.client.upsert(
|
||||
collection_name=self.collection_name,
|
||||
points=Batch(
|
||||
@@ -180,16 +186,17 @@ class QdrantDB(BaseVectorDB):
|
||||
keys = set(where.keys() if where is not None else set())
|
||||
|
||||
qdrant_must_filters = []
|
||||
if len(keys.intersection(self.metadata_keys)) != 0:
|
||||
for key in keys.intersection(self.metadata_keys):
|
||||
if len(keys) > 0:
|
||||
for key in keys:
|
||||
qdrant_must_filters.append(
|
||||
models.FieldCondition(
|
||||
key="payload.metadata.{}".format(key),
|
||||
key="metadata.{}".format(key),
|
||||
match=models.MatchValue(
|
||||
value=where.get(key),
|
||||
),
|
||||
)
|
||||
)
|
||||
|
||||
results = self.client.search(
|
||||
collection_name=self.collection_name,
|
||||
query_filter=models.Filter(must=qdrant_must_filters),
|
||||
@@ -228,3 +235,21 @@ class QdrantDB(BaseVectorDB):
|
||||
raise TypeError("Collection name must be a string")
|
||||
self.config.collection_name = name
|
||||
self.collection_name = self._get_or_create_collection()
|
||||
|
||||
@staticmethod
|
||||
def _generate_query(where: dict):
|
||||
must_fields = []
|
||||
for key, value in where.items():
|
||||
must_fields.append(
|
||||
models.FieldCondition(
|
||||
key=f"metadata.{key}",
|
||||
match=models.MatchValue(
|
||||
value=value,
|
||||
),
|
||||
)
|
||||
)
|
||||
return models.Filter(must=must_fields)
|
||||
|
||||
def delete(self, where: dict):
|
||||
db_filter = self._generate_query(where)
|
||||
self.client.delete(collection_name=self.collection_name, points_selector=db_filter)
|
||||
|
||||
@@ -45,6 +45,9 @@ class WeaviateDB(BaseVectorDB):
|
||||
auth_client_secret=weaviate.AuthApiKey(api_key=os.environ.get("WEAVIATE_API_KEY")),
|
||||
**self.config.extra_params,
|
||||
)
|
||||
# Since weaviate uses graphQL, we need to keep track of metadata keys added in the vectordb.
|
||||
# This is needed to filter data while querying.
|
||||
self.metadata_keys = {"data_type", "doc_id", "url", "hash", "app_id"}
|
||||
|
||||
# Call parent init here because embedder is needed
|
||||
super().__init__(config=self.config)
|
||||
@@ -58,7 +61,6 @@ class WeaviateDB(BaseVectorDB):
|
||||
raise ValueError("Embedder not set. Please set an embedder with `set_embedder` before initialization.")
|
||||
|
||||
self.index_name = self._get_index_name()
|
||||
self.metadata_keys = {"data_type", "doc_id", "url", "hash", "app_id"}
|
||||
if not self.client.schema.exists(self.index_name):
|
||||
# id is a reserved field in Weaviate, hence we had to change the name of the id field to identifier
|
||||
# The none vectorizer is crucial as we have our own custom embedding function
|
||||
@@ -127,29 +129,64 @@ class WeaviateDB(BaseVectorDB):
|
||||
:return: ids
|
||||
:rtype: Set[str]
|
||||
"""
|
||||
weaviate_where_operands = []
|
||||
|
||||
if ids is None or len(ids) == 0:
|
||||
return {"ids": []}
|
||||
if ids:
|
||||
for doc_id in ids:
|
||||
weaviate_where_operands.append({"path": ["identifier"], "operator": "Equal", "valueText": doc_id})
|
||||
|
||||
keys = set(where.keys() if where is not None else set())
|
||||
if len(keys) > 0:
|
||||
for key in keys:
|
||||
weaviate_where_operands.append(
|
||||
{
|
||||
"path": ["metadata", self.index_name + "_metadata", key],
|
||||
"operator": "Equal",
|
||||
"valueText": where.get(key),
|
||||
}
|
||||
)
|
||||
|
||||
if len(weaviate_where_operands) == 1:
|
||||
weaviate_where_clause = weaviate_where_operands[0]
|
||||
else:
|
||||
weaviate_where_clause = {"operator": "And", "operands": weaviate_where_operands}
|
||||
|
||||
existing_ids = []
|
||||
metadatas = []
|
||||
cursor = None
|
||||
offset = 0
|
||||
has_iterated_once = False
|
||||
query_metadata_keys = self.metadata_keys.union(keys)
|
||||
while cursor is not None or not has_iterated_once:
|
||||
has_iterated_once = True
|
||||
results = self._query_with_cursor(
|
||||
self.client.query.get(self.index_name, ["identifier"])
|
||||
results = self._query_with_offset(
|
||||
self.client.query.get(
|
||||
self.index_name,
|
||||
[
|
||||
"identifier",
|
||||
weaviate.LinkTo("metadata", self.index_name + "_metadata", list(query_metadata_keys)),
|
||||
],
|
||||
)
|
||||
.with_where(weaviate_where_clause)
|
||||
.with_additional(["id"])
|
||||
.with_limit(self.BATCH_SIZE),
|
||||
cursor,
|
||||
.with_limit(limit or self.BATCH_SIZE),
|
||||
offset,
|
||||
)
|
||||
|
||||
fetched_results = results["data"]["Get"].get(self.index_name, [])
|
||||
if len(fetched_results) == 0:
|
||||
if not fetched_results:
|
||||
break
|
||||
|
||||
for result in fetched_results:
|
||||
existing_ids.append(result["identifier"])
|
||||
metadatas.append(result["metadata"][0])
|
||||
cursor = result["_additional"]["id"]
|
||||
offset += 1
|
||||
|
||||
return {"ids": existing_ids}
|
||||
if limit is not None and len(existing_ids) >= limit:
|
||||
break
|
||||
|
||||
return {"ids": existing_ids, "metadatas": metadatas}
|
||||
|
||||
def add(self, documents: list[str], metadatas: list[object], ids: list[str], **kwargs: Optional[dict[str, any]]):
|
||||
"""add data in vector database
|
||||
@@ -201,21 +238,20 @@ class WeaviateDB(BaseVectorDB):
|
||||
query_vector = self.embedder.embedding_fn([input_query])[0]
|
||||
keys = set(where.keys() if where is not None else set())
|
||||
data_fields = ["text"]
|
||||
|
||||
query_metadata_keys = self.metadata_keys.union(keys)
|
||||
if citations:
|
||||
data_fields.append(weaviate.LinkTo("metadata", self.index_name + "_metadata", list(self.metadata_keys)))
|
||||
data_fields.append(weaviate.LinkTo("metadata", self.index_name + "_metadata", list(query_metadata_keys)))
|
||||
|
||||
if len(keys.intersection(self.metadata_keys)) != 0:
|
||||
if len(keys) > 0:
|
||||
weaviate_where_operands = []
|
||||
for key in keys:
|
||||
if key in self.metadata_keys:
|
||||
weaviate_where_operands.append(
|
||||
{
|
||||
"path": ["metadata", self.index_name + "_metadata", key],
|
||||
"operator": "Equal",
|
||||
"valueText": where.get(key),
|
||||
}
|
||||
)
|
||||
weaviate_where_operands.append(
|
||||
{
|
||||
"path": ["metadata", self.index_name + "_metadata", key],
|
||||
"operator": "Equal",
|
||||
"valueText": where.get(key),
|
||||
}
|
||||
)
|
||||
if len(weaviate_where_operands) == 1:
|
||||
weaviate_where_clause = weaviate_where_operands[0]
|
||||
else:
|
||||
@@ -289,11 +325,37 @@ class WeaviateDB(BaseVectorDB):
|
||||
:return: Weaviate index
|
||||
:rtype: str
|
||||
"""
|
||||
return f"{self.config.collection_name}_{self.embedder.vector_dimension}".capitalize()
|
||||
return f"{self.config.collection_name}_{self.embedder.vector_dimension}".capitalize().replace("-", "_")
|
||||
|
||||
@staticmethod
|
||||
def _query_with_cursor(query, cursor):
|
||||
if cursor is not None:
|
||||
query.with_after(cursor)
|
||||
def _query_with_offset(query, offset):
|
||||
if offset:
|
||||
query.with_offset(offset)
|
||||
results = query.do()
|
||||
return results
|
||||
|
||||
def _generate_query(self, where: dict):
|
||||
weaviate_where_operands = []
|
||||
for key, value in where.items():
|
||||
weaviate_where_operands.append(
|
||||
{
|
||||
"path": ["metadata", self.index_name + "_metadata", key],
|
||||
"operator": "Equal",
|
||||
"valueText": value,
|
||||
}
|
||||
)
|
||||
|
||||
if len(weaviate_where_operands) == 1:
|
||||
weaviate_where_clause = weaviate_where_operands[0]
|
||||
else:
|
||||
weaviate_where_clause = {"operator": "And", "operands": weaviate_where_operands}
|
||||
|
||||
return weaviate_where_clause
|
||||
|
||||
def delete(self, where: dict):
|
||||
"""Delete from database.
|
||||
:param where: to filter data
|
||||
:type where: dict[str, any]
|
||||
"""
|
||||
query = self._generate_query(where)
|
||||
self.client.batch.delete_objects(self.index_name, where=query)
|
||||
|
||||
@@ -56,9 +56,9 @@ class TestQdrantDB(unittest.TestCase):
|
||||
App(config=app_config, db=db, embedding_model=embedder)
|
||||
|
||||
resp = db.get(ids=[], where={})
|
||||
self.assertEqual(resp, {"ids": []})
|
||||
self.assertEqual(resp, {"ids": [], "metadatas": []})
|
||||
resp2 = db.get(ids=["123", "456"], where={"url": "https://ai.ai"})
|
||||
self.assertEqual(resp2, {"ids": []})
|
||||
self.assertEqual(resp2, {"ids": [], "metadatas": []})
|
||||
|
||||
@patch("embedchain.vectordb.qdrant.QdrantClient")
|
||||
@patch.object(uuid, "uuid4", side_effect=TEST_UUIDS)
|
||||
@@ -119,7 +119,7 @@ class TestQdrantDB(unittest.TestCase):
|
||||
query_filter=models.Filter(
|
||||
must=[
|
||||
models.FieldCondition(
|
||||
key="payload.metadata.doc_id",
|
||||
key="metadata.doc_id",
|
||||
match=models.MatchValue(
|
||||
value="123",
|
||||
),
|
||||
|
||||
Reference in New Issue
Block a user