[Bugfix] fix qdrant and weaviate db integration (#1181)

Co-authored-by: Deven Patel <deven298@yahoo.com>
This commit is contained in:
Deven Patel
2024-01-23 14:24:29 +05:30
committed by GitHub
parent 22e14b5e65
commit 2d9fbd4e49
3 changed files with 131 additions and 44 deletions

View File

@@ -11,6 +11,8 @@ try:
except ImportError:
raise ImportError("Qdrant requires extra dependencies. Install with `pip install embedchain[qdrant]`") from None
from tqdm import tqdm
from embedchain.config.vectordb.qdrant import QdrantDBConfig
from embedchain.vectordb.base import BaseVectorDB
@@ -48,7 +50,6 @@ class QdrantDB(BaseVectorDB):
raise ValueError("Embedder not set. Please set an embedder with `set_embedder` before initialization.")
self.collection_name = self._get_or_create_collection()
self.metadata_keys = {"data_type", "doc_id", "url", "hash", "app_id", "text"}
all_collections = self.client.get_collections()
collection_names = [collection.name for collection in all_collections.collections]
if self.collection_name not in collection_names:
@@ -82,21 +83,23 @@ class QdrantDB(BaseVectorDB):
:return: All the existing IDs
:rtype: Set[str]
"""
if ids is None or len(ids) == 0:
return {"ids": []}
keys = set(where.keys() if where is not None else set())
qdrant_must_filters = [
models.FieldCondition(
key="identifier",
match=models.MatchAny(
any=ids,
),
qdrant_must_filters = []
if ids:
qdrant_must_filters.append(
models.FieldCondition(
key="identifier",
match=models.MatchAny(
any=ids,
),
)
)
]
if len(keys.intersection(self.metadata_keys)) != 0:
for key in keys.intersection(self.metadata_keys):
if len(keys) > 0:
for key in keys:
qdrant_must_filters.append(
models.FieldCondition(
key="metadata.{}".format(key),
@@ -108,6 +111,7 @@ class QdrantDB(BaseVectorDB):
offset = 0
existing_ids = []
metadatas = []
while offset is not None:
response = self.client.scroll(
collection_name=self.collection_name,
@@ -118,7 +122,8 @@ class QdrantDB(BaseVectorDB):
offset = response[1]
for doc in response[0]:
existing_ids.append(doc.payload["identifier"])
return {"ids": existing_ids}
metadatas.append(doc.payload["metadata"])
return {"ids": existing_ids, "metadatas": metadatas}
def add(
self,
@@ -143,7 +148,8 @@ class QdrantDB(BaseVectorDB):
metadata["text"] = document
qdrant_ids.append(str(uuid.uuid4()))
payloads.append({"identifier": id, "text": document, "metadata": copy.deepcopy(metadata)})
for i in range(0, len(qdrant_ids), self.BATCH_SIZE):
for i in tqdm(range(0, len(qdrant_ids), self.BATCH_SIZE), desc="Adding data in batches"):
self.client.upsert(
collection_name=self.collection_name,
points=Batch(
@@ -180,16 +186,17 @@ class QdrantDB(BaseVectorDB):
keys = set(where.keys() if where is not None else set())
qdrant_must_filters = []
if len(keys.intersection(self.metadata_keys)) != 0:
for key in keys.intersection(self.metadata_keys):
if len(keys) > 0:
for key in keys:
qdrant_must_filters.append(
models.FieldCondition(
key="payload.metadata.{}".format(key),
key="metadata.{}".format(key),
match=models.MatchValue(
value=where.get(key),
),
)
)
results = self.client.search(
collection_name=self.collection_name,
query_filter=models.Filter(must=qdrant_must_filters),
@@ -228,3 +235,21 @@ class QdrantDB(BaseVectorDB):
raise TypeError("Collection name must be a string")
self.config.collection_name = name
self.collection_name = self._get_or_create_collection()
@staticmethod
def _generate_query(where: dict):
must_fields = []
for key, value in where.items():
must_fields.append(
models.FieldCondition(
key=f"metadata.{key}",
match=models.MatchValue(
value=value,
),
)
)
return models.Filter(must=must_fields)
def delete(self, where: dict):
db_filter = self._generate_query(where)
self.client.delete(collection_name=self.collection_name, points_selector=db_filter)

View File

@@ -45,6 +45,9 @@ class WeaviateDB(BaseVectorDB):
auth_client_secret=weaviate.AuthApiKey(api_key=os.environ.get("WEAVIATE_API_KEY")),
**self.config.extra_params,
)
# Since weaviate uses graphQL, we need to keep track of metadata keys added in the vectordb.
# This is needed to filter data while querying.
self.metadata_keys = {"data_type", "doc_id", "url", "hash", "app_id"}
# Call parent init here because embedder is needed
super().__init__(config=self.config)
@@ -58,7 +61,6 @@ class WeaviateDB(BaseVectorDB):
raise ValueError("Embedder not set. Please set an embedder with `set_embedder` before initialization.")
self.index_name = self._get_index_name()
self.metadata_keys = {"data_type", "doc_id", "url", "hash", "app_id"}
if not self.client.schema.exists(self.index_name):
# id is a reserved field in Weaviate, hence we had to change the name of the id field to identifier
# The none vectorizer is crucial as we have our own custom embedding function
@@ -127,29 +129,64 @@ class WeaviateDB(BaseVectorDB):
:return: ids
:rtype: Set[str]
"""
weaviate_where_operands = []
if ids is None or len(ids) == 0:
return {"ids": []}
if ids:
for doc_id in ids:
weaviate_where_operands.append({"path": ["identifier"], "operator": "Equal", "valueText": doc_id})
keys = set(where.keys() if where is not None else set())
if len(keys) > 0:
for key in keys:
weaviate_where_operands.append(
{
"path": ["metadata", self.index_name + "_metadata", key],
"operator": "Equal",
"valueText": where.get(key),
}
)
if len(weaviate_where_operands) == 1:
weaviate_where_clause = weaviate_where_operands[0]
else:
weaviate_where_clause = {"operator": "And", "operands": weaviate_where_operands}
existing_ids = []
metadatas = []
cursor = None
offset = 0
has_iterated_once = False
query_metadata_keys = self.metadata_keys.union(keys)
while cursor is not None or not has_iterated_once:
has_iterated_once = True
results = self._query_with_cursor(
self.client.query.get(self.index_name, ["identifier"])
results = self._query_with_offset(
self.client.query.get(
self.index_name,
[
"identifier",
weaviate.LinkTo("metadata", self.index_name + "_metadata", list(query_metadata_keys)),
],
)
.with_where(weaviate_where_clause)
.with_additional(["id"])
.with_limit(self.BATCH_SIZE),
cursor,
.with_limit(limit or self.BATCH_SIZE),
offset,
)
fetched_results = results["data"]["Get"].get(self.index_name, [])
if len(fetched_results) == 0:
if not fetched_results:
break
for result in fetched_results:
existing_ids.append(result["identifier"])
metadatas.append(result["metadata"][0])
cursor = result["_additional"]["id"]
offset += 1
return {"ids": existing_ids}
if limit is not None and len(existing_ids) >= limit:
break
return {"ids": existing_ids, "metadatas": metadatas}
def add(self, documents: list[str], metadatas: list[object], ids: list[str], **kwargs: Optional[dict[str, any]]):
"""add data in vector database
@@ -201,21 +238,20 @@ class WeaviateDB(BaseVectorDB):
query_vector = self.embedder.embedding_fn([input_query])[0]
keys = set(where.keys() if where is not None else set())
data_fields = ["text"]
query_metadata_keys = self.metadata_keys.union(keys)
if citations:
data_fields.append(weaviate.LinkTo("metadata", self.index_name + "_metadata", list(self.metadata_keys)))
data_fields.append(weaviate.LinkTo("metadata", self.index_name + "_metadata", list(query_metadata_keys)))
if len(keys.intersection(self.metadata_keys)) != 0:
if len(keys) > 0:
weaviate_where_operands = []
for key in keys:
if key in self.metadata_keys:
weaviate_where_operands.append(
{
"path": ["metadata", self.index_name + "_metadata", key],
"operator": "Equal",
"valueText": where.get(key),
}
)
weaviate_where_operands.append(
{
"path": ["metadata", self.index_name + "_metadata", key],
"operator": "Equal",
"valueText": where.get(key),
}
)
if len(weaviate_where_operands) == 1:
weaviate_where_clause = weaviate_where_operands[0]
else:
@@ -289,11 +325,37 @@ class WeaviateDB(BaseVectorDB):
:return: Weaviate index
:rtype: str
"""
return f"{self.config.collection_name}_{self.embedder.vector_dimension}".capitalize()
return f"{self.config.collection_name}_{self.embedder.vector_dimension}".capitalize().replace("-", "_")
@staticmethod
def _query_with_cursor(query, cursor):
if cursor is not None:
query.with_after(cursor)
def _query_with_offset(query, offset):
if offset:
query.with_offset(offset)
results = query.do()
return results
def _generate_query(self, where: dict):
weaviate_where_operands = []
for key, value in where.items():
weaviate_where_operands.append(
{
"path": ["metadata", self.index_name + "_metadata", key],
"operator": "Equal",
"valueText": value,
}
)
if len(weaviate_where_operands) == 1:
weaviate_where_clause = weaviate_where_operands[0]
else:
weaviate_where_clause = {"operator": "And", "operands": weaviate_where_operands}
return weaviate_where_clause
def delete(self, where: dict):
"""Delete from database.
:param where: to filter data
:type where: dict[str, any]
"""
query = self._generate_query(where)
self.client.batch.delete_objects(self.index_name, where=query)