Improve getting started page by adding steps (#904)

This commit is contained in:
Sidharth Mohanty
2023-11-04 02:10:40 +05:30
committed by GitHub
parent 9c4b023297
commit 23c912f2b7
2 changed files with 334 additions and 53 deletions

View File

@@ -6,7 +6,7 @@ openapi: post /create
```bash Request
curl --request POST \
--url http://localhost:8080/create \
--url http://localhost:8080/create?app_id=app1 \
-F "config=@/path/to/config.yaml"
```
@@ -15,7 +15,81 @@ curl --request POST \
<ResponseExample>
```json Response
{ "response": "App created successfully. App ID: {app_id}" }
{ "response": "App created successfully. App ID: app1" }
```
</ResponseExample>
By default we will use the opensource **gpt4all** model to get started. You can also specify your own config by uploading a config YAML file.
For example, create a `config.yaml` file (adjust according to your requirements):
```yaml
app:
config:
id: "default-app"
llm:
provider: openai
config:
model: "gpt-3.5-turbo"
temperature: 0.5
max_tokens: 1000
top_p: 1
stream: false
template: |
Use the following pieces of context to answer the query at the end.
If you don't know the answer, just say that you don't know, don't try to make up an answer.
$context
Query: $query
Helpful Answer:
vectordb:
provider: chroma
config:
collection_name: "rest-api-app"
dir: db
allow_reset: true
embedder:
provider: openai
config:
model: "text-embedding-ada-002"
```
To learn more about custom configurations, check out the [custom configurations docs](https://docs.embedchain.ai/advanced/configuration). To explore more examples of config yamls for embedchain, visit [embedchain/configs](https://github.com/embedchain/embedchain/tree/main/configs).
Now, you can upload this config file in the request body.
For example,
```bash Request
curl --request POST \
--url http://localhost:8080/create?app_id=my-app \
-F "config=@/path/to/config.yaml"
```
**Note:** To use custom models, an **API key** might be required. Refer to the table below to determine the necessary API key for your provider.
| Keys | Providers |
| -------------------------- | ------------------------------ |
| `OPENAI_API_KEY ` | OpenAI, Azure OpenAI, Jina etc |
| `OPENAI_API_TYPE` | Azure OpenAI |
| `OPENAI_API_BASE` | Azure OpenAI |
| `OPENAI_API_VERSION` | Azure OpenAI |
| `COHERE_API_KEY` | Cohere |
| `ANTHROPIC_API_KEY` | Anthropic |
| `JINACHAT_API_KEY` | Jina |
| `HUGGINGFACE_ACCESS_TOKEN` | Huggingface |
| `REPLICATE_API_TOKEN` | LLAMA2 |
To add env variables, you can simply run the docker command with the `-e` flag.
For example,
```bash
docker run --name embedchain -p 8080:8080 -e OPENAI_API_KEY=<YOUR_OPENAI_API_KEY> embedchain/rest-api:latest
```

View File

@@ -14,73 +14,280 @@ Navigate to [http://localhost:8080/docs](http://localhost:8080/docs) to interact
![Swagger Docs Screenshot](https://github.com/embedchain/embedchain/assets/73601258/299d81e5-a0df-407c-afc2-6fa2c4286844)
## Creating your first App
## ⚡ Steps to get started
App requires an `app_id` to be created. The `app_id` is a unique identifier for your app. By default we will use the opensource **gpt4all** model to get started. You can also specify your own config by uploading a config YAML file.
<Steps>
<Step title="⚙️ Create an app">
<Tabs>
<Tab title="cURL">
```bash
curl --request POST "http://localhost:8080/create?app_id=my-app" \
-H "accept: application/json"
```
</Tab>
<Tab title="python">
```python
import requests
For example, create a `config.yaml` file (adjust according to your requirements):
url = "http://localhost:8080/create?app_id=my-app"
```yaml
app:
config:
id: "default-app"
payload={}
llm:
provider: openai
config:
model: "gpt-3.5-turbo"
temperature: 0.5
max_tokens: 1000
top_p: 1
stream: false
template: |
Use the following pieces of context to answer the query at the end.
If you don't know the answer, just say that you don't know, don't try to make up an answer.
response = requests.request("POST", url, data=payload)
$context
print(response)
```
</Tab>
<Tab title="javascript">
```javascript
const data = fetch("http://localhost:8080/create?app_id=my-app", {
method: "POST",
}).then((res) => res.json());
Query: $query
console.log(data);
```
</Tab>
<Tab title="go">
```go
package main
Helpful Answer:
import (
"fmt"
"net/http"
"io/ioutil"
)
vectordb:
provider: chroma
config:
collection_name: "rest-api-app"
dir: db
allow_reset: true
func main() {
embedder:
provider: openai
config:
model: "text-embedding-ada-002"
```
url := "http://localhost:8080/create?app_id=my-app"
To learn more about custom configurations, check out the [custom configurations docs](https://docs.embedchain.ai/advanced/configuration). To explore more examples of config yamls for embedchain, visit [embedchain/configs](https://github.com/embedchain/embedchain/tree/main/configs).
payload := strings.NewReader("")
Now, you can upload this config file in the request body.
req, _ := http.NewRequest("POST", url, payload)
**Note:** To use custom models, an **API key** might be required. Refer to the table below to determine the necessary API key for your provider.
req.Header.Add("Content-Type", "application/json")
| Keys | Providers |
| -------------------------- | ------------------------------ |
| `OPENAI_API_KEY ` | OpenAI, Azure OpenAI, Jina etc |
| `OPENAI_API_TYPE` | Azure OpenAI |
| `OPENAI_API_BASE` | Azure OpenAI |
| `OPENAI_API_VERSION` | Azure OpenAI |
| `COHERE_API_KEY` | Cohere |
| `ANTHROPIC_API_KEY` | Anthropic |
| `JINACHAT_API_KEY` | Jina |
| `HUGGINGFACE_ACCESS_TOKEN` | Huggingface |
| `REPLICATE_API_TOKEN` | LLAMA2 |
res, _ := http.DefaultClient.Do(req)
To add env variables, you can simply run the docker command with the `-e` flag.
defer res.Body.Close()
body, _ := ioutil.ReadAll(res.Body)
For example,
fmt.Println(res)
fmt.Println(string(body))
```bash
docker run --name embedchain -p 8080:8080 -e OPENAI_API_KEY=<YOUR_OPENAI_API_KEY> embedchain/rest-api:latest
```
}
```
</Tab>
</Tabs>
</Step>
<Step title="🗃️ Add data sources">
<Tabs>
<Tab title="cURL">
```bash
curl --request POST \
--url http://localhost:8080/my-app/add \
-d "source=https://www.forbes.com/profile/elon-musk" \
-d "data_type=web_page"
```
</Tab>
<Tab title="python">
```python
import requests
url = "http://localhost:8080/my-app/add"
payload = "source=https://www.forbes.com/profile/elon-musk&data_type=web_page"
headers = {}
response = requests.request("POST", url, headers=headers, data=payload)
print(response)
```
</Tab>
<Tab title="javascript">
```javascript
const data = fetch("http://localhost:8080/my-app/add", {
method: "POST",
body: "source=https://www.forbes.com/profile/elon-musk&data_type=web_page",
}).then((res) => res.json());
console.log(data);
```
</Tab>
<Tab title="go">
```go
package main
import (
"fmt"
"strings"
"net/http"
"io/ioutil"
)
func main() {
url := "http://localhost:8080/my-app/add"
payload := strings.NewReader("source=https://www.forbes.com/profile/elon-musk&data_type=web_page")
req, _ := http.NewRequest("POST", url, payload)
req.Header.Add("Content-Type", "application/x-www-form-urlencoded")
res, _ := http.DefaultClient.Do(req)
defer res.Body.Close()
body, _ := ioutil.ReadAll(res.Body)
fmt.Println(res)
fmt.Println(string(body))
}
```
</Tab>
</Tabs>
</Step>
<Step title="💬 Query on your data">
<Tabs>
<Tab title="cURL">
```bash
curl --request POST \
--url http://localhost:8080/my-app/query \
-d "query=Who is Elon Musk?"
```
</Tab>
<Tab title="python">
```python
import requests
url = "http://localhost:8080/my-app/query"
payload = "query=Who is Elon Musk?"
headers = {}
response = requests.request("POST", url, headers=headers, data=payload)
print(response)
```
</Tab>
<Tab title="javascript">
```javascript
const data = fetch("http://localhost:8080/my-app/query", {
method: "POST",
body: "query=Who is Elon Musk?",
}).then((res) => res.json());
console.log(data);
```
</Tab>
<Tab title="go">
```go
package main
import (
"fmt"
"strings"
"net/http"
"io/ioutil"
)
func main() {
url := "http://localhost:8080/my-app/query"
payload := strings.NewReader("query=Who is Elon Musk?")
req, _ := http.NewRequest("POST", url, payload)
req.Header.Add("Content-Type", "application/x-www-form-urlencoded")
res, _ := http.DefaultClient.Do(req)
defer res.Body.Close()
body, _ := ioutil.ReadAll(res.Body)
fmt.Println(res)
fmt.Println(string(body))
}
```
</Tab>
</Tabs>
</Step>
<Step title="🚀 (Optional) Deploy your app to Embedchain Platform">
<Tabs>
<Tab title="cURL">
```bash
curl --request POST \
--url http://localhost:8080/my-app/deploy \
-d "api_key=ec-xxxx"
```
</Tab>
<Tab title="python">
```python
import requests
url = "http://localhost:8080/my-app/deploy"
payload = "api_key=ec-xxxx"
response = requests.request("POST", url, data=payload)
print(response)
```
</Tab>
<Tab title="javascript">
```javascript
const data = fetch("http://localhost:8080/my-app/deploy", {
method: "POST",
body: "api_key=ec-xxxx",
}).then((res) => res.json());
console.log(data);
```
</Tab>
<Tab title="go">
```go
package main
import (
"fmt"
"strings"
"net/http"
"io/ioutil"
)
func main() {
url := "http://localhost:8080/my-app/deploy"
payload := strings.NewReader("api_key=ec-xxxx")
req, _ := http.NewRequest("POST", url, payload)
req.Header.Add("Content-Type", "application/x-www-form-urlencoded")
res, _ := http.DefaultClient.Do(req)
defer res.Body.Close()
body, _ := ioutil.ReadAll(res.Body)
fmt.Println(res)
fmt.Println(string(body))
}
```
</Tab>
</Tabs>
</Step>
</Steps>
And you're ready! 🎉
If you run into issues, please feel free to contact us using below links: