docs: update docstrings (#565)
This commit is contained in:
@@ -1,4 +1,4 @@
|
||||
from typing import Any, Dict, List
|
||||
from typing import Dict, List, Optional, Set
|
||||
|
||||
try:
|
||||
from elasticsearch import Elasticsearch
|
||||
@@ -15,16 +15,23 @@ from embedchain.vectordb.base_vector_db import BaseVectorDB
|
||||
|
||||
@register_deserializable
|
||||
class ElasticsearchDB(BaseVectorDB):
|
||||
"""
|
||||
Elasticsearch as vector database
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: ElasticsearchDBConfig = None,
|
||||
es_config: ElasticsearchDBConfig = None, # Backwards compatibility
|
||||
config: Optional[ElasticsearchDBConfig] = None,
|
||||
es_config: Optional[ElasticsearchDBConfig] = None, # Backwards compatibility
|
||||
):
|
||||
"""
|
||||
Elasticsearch as vector database
|
||||
:param es_config. elasticsearch database config to be used for connection
|
||||
:param embedding_fn: Function to generate embedding vectors.
|
||||
:param vector_dim: Vector dimension generated by embedding fn
|
||||
"""Elasticsearch as vector database.
|
||||
|
||||
:param config: Elasticsearch database config, defaults to None
|
||||
:type config: ElasticsearchDBConfig, optional
|
||||
:param es_config: `es_config` is supported as an alias for `config` (for backwards compatibility),
|
||||
defaults to None
|
||||
:type es_config: ElasticsearchDBConfig, optional
|
||||
:raises ValueError: No config provided
|
||||
"""
|
||||
if config is None and es_config is None:
|
||||
raise ValueError("ElasticsearchDBConfig is required")
|
||||
@@ -53,16 +60,22 @@ class ElasticsearchDB(BaseVectorDB):
|
||||
self.client.indices.create(index=es_index, body=index_settings)
|
||||
|
||||
def _get_or_create_db(self):
|
||||
"""Called during initialization"""
|
||||
return self.client
|
||||
|
||||
def _get_or_create_collection(self, name):
|
||||
"""Note: nothing to return here. Discuss later"""
|
||||
|
||||
def get(self, ids: List[str], where: Dict[str, any]) -> List[str]:
|
||||
def get(self, ids: List[str], where: Dict[str, any]) -> Set[str]:
|
||||
"""
|
||||
Get existing doc ids present in vector database
|
||||
:param ids: list of doc ids to check for existance
|
||||
:param where: Optional. to filter data
|
||||
|
||||
:param ids: _list of doc ids to check for existance
|
||||
:type ids: List[str]
|
||||
:param where: to filter data
|
||||
:type where: Dict[str, any]
|
||||
:return: ids
|
||||
:rtype: Set[str]
|
||||
"""
|
||||
query = {"bool": {"must": [{"ids": {"values": ids}}]}}
|
||||
if "app_id" in where:
|
||||
@@ -73,13 +86,17 @@ class ElasticsearchDB(BaseVectorDB):
|
||||
ids = [doc["_id"] for doc in docs]
|
||||
return set(ids)
|
||||
|
||||
def add(self, documents: List[str], metadatas: List[object], ids: List[str]) -> Any:
|
||||
"""
|
||||
add data in vector database
|
||||
def add(self, documents: List[str], metadatas: List[object], ids: List[str]):
|
||||
"""add data in vector database
|
||||
|
||||
:param documents: list of texts to add
|
||||
:type documents: List[str]
|
||||
:param metadatas: list of metadata associated with docs
|
||||
:type metadatas: List[object]
|
||||
:param ids: ids of docs
|
||||
:type ids: List[str]
|
||||
"""
|
||||
|
||||
docs = []
|
||||
embeddings = self.embedder.embedding_fn(documents)
|
||||
for id, text, metadata, embeddings in zip(ids, documents, metadatas, embeddings):
|
||||
@@ -92,14 +109,19 @@ class ElasticsearchDB(BaseVectorDB):
|
||||
)
|
||||
bulk(self.client, docs)
|
||||
self.client.indices.refresh(index=self._get_index())
|
||||
return
|
||||
|
||||
def query(self, input_query: List[str], n_results: int, where: Dict[str, any]) -> List[str]:
|
||||
"""
|
||||
query contents from vector data base based on vector similarity
|
||||
|
||||
:param input_query: list of query string
|
||||
:type input_query: List[str]
|
||||
:param n_results: no of similar documents to fetch from database
|
||||
:type n_results: int
|
||||
:param where: Optional. to filter data
|
||||
:type where: Dict[str, any]
|
||||
:return: Database contents that are the result of the query
|
||||
:rtype: List[str]
|
||||
"""
|
||||
input_query_vector = self.embedder.embedding_fn(input_query)
|
||||
query_vector = input_query_vector[0]
|
||||
@@ -122,21 +144,41 @@ class ElasticsearchDB(BaseVectorDB):
|
||||
return contents
|
||||
|
||||
def set_collection_name(self, name: str):
|
||||
"""
|
||||
Set the name of the collection. A collection is an isolated space for vectors.
|
||||
|
||||
:param name: Name of the collection.
|
||||
:type name: str
|
||||
"""
|
||||
self.config.collection_name = name
|
||||
|
||||
def count(self) -> int:
|
||||
"""
|
||||
Count number of documents/chunks embedded in the database.
|
||||
|
||||
:return: number of documents
|
||||
:rtype: int
|
||||
"""
|
||||
query = {"match_all": {}}
|
||||
response = self.client.count(index=self._get_index(), query=query)
|
||||
doc_count = response["count"]
|
||||
return doc_count
|
||||
|
||||
def reset(self):
|
||||
"""
|
||||
Resets the database. Deletes all embeddings irreversibly.
|
||||
"""
|
||||
# Delete all data from the database
|
||||
if self.client.indices.exists(index=self._get_index()):
|
||||
# delete index in Es
|
||||
self.client.indices.delete(index=self._get_index())
|
||||
|
||||
def _get_index(self):
|
||||
def _get_index(self) -> str:
|
||||
"""Get the Elasticsearch index for a collection
|
||||
|
||||
:return: Elasticsearch index
|
||||
:rtype: str
|
||||
"""
|
||||
# NOTE: The method is preferred to an attribute, because if collection name changes,
|
||||
# it's always up-to-date.
|
||||
return f"{self.config.collection_name}_{self.embedder.vector_dimension}"
|
||||
|
||||
Reference in New Issue
Block a user