docs: update docstrings (#565)
This commit is contained in:
@@ -1,6 +1,7 @@
|
||||
import logging
|
||||
from typing import Any, Dict, List, Optional
|
||||
from typing import Dict, List, Optional
|
||||
|
||||
from chromadb import Collection, QueryResult
|
||||
from langchain.docstore.document import Document
|
||||
|
||||
from embedchain.config import ChromaDbConfig
|
||||
@@ -25,6 +26,11 @@ class ChromaDB(BaseVectorDB):
|
||||
"""Vector database using ChromaDB."""
|
||||
|
||||
def __init__(self, config: Optional[ChromaDbConfig] = None):
|
||||
"""Initialize a new ChromaDB instance
|
||||
|
||||
:param config: Configuration options for Chroma, defaults to None
|
||||
:type config: Optional[ChromaDbConfig], optional
|
||||
"""
|
||||
if config:
|
||||
self.config = config
|
||||
else:
|
||||
@@ -60,11 +66,19 @@ class ChromaDB(BaseVectorDB):
|
||||
self._get_or_create_collection(self.config.collection_name)
|
||||
|
||||
def _get_or_create_db(self):
|
||||
"""Get or create the database."""
|
||||
"""Called during initialization"""
|
||||
return self.client
|
||||
|
||||
def _get_or_create_collection(self, name):
|
||||
"""Get or create the collection."""
|
||||
def _get_or_create_collection(self, name: str) -> Collection:
|
||||
"""
|
||||
Get or create a named collection.
|
||||
|
||||
:param name: Name of the collection
|
||||
:type name: str
|
||||
:raises ValueError: No embedder configured.
|
||||
:return: Created collection
|
||||
:rtype: Collection
|
||||
"""
|
||||
if not hasattr(self, "embedder") or not self.embedder:
|
||||
raise ValueError("Cannot create a Chroma database collection without an embedder.")
|
||||
self.collection = self.client.get_or_create_collection(
|
||||
@@ -76,8 +90,13 @@ class ChromaDB(BaseVectorDB):
|
||||
def get(self, ids: List[str], where: Dict[str, any]) -> List[str]:
|
||||
"""
|
||||
Get existing doc ids present in vector database
|
||||
:param ids: list of doc ids to check for existance
|
||||
|
||||
:param ids: list of doc ids to check for existence
|
||||
:type ids: List[str]
|
||||
:param where: Optional. to filter data
|
||||
:type where: Dict[str, any]
|
||||
:return: Existing documents.
|
||||
:rtype: List[str]
|
||||
"""
|
||||
existing_docs = self.collection.get(
|
||||
ids=ids,
|
||||
@@ -86,16 +105,28 @@ class ChromaDB(BaseVectorDB):
|
||||
|
||||
return set(existing_docs["ids"])
|
||||
|
||||
def add(self, documents: List[str], metadatas: List[object], ids: List[str]) -> Any:
|
||||
def add(self, documents: List[str], metadatas: List[object], ids: List[str]):
|
||||
"""
|
||||
add data in vector database
|
||||
:param documents: list of texts to add
|
||||
:param metadatas: list of metadata associated with docs
|
||||
:param ids: ids of docs
|
||||
Add vectors to chroma database
|
||||
|
||||
:param documents: Documents
|
||||
:type documents: List[str]
|
||||
:param metadatas: Metadatas
|
||||
:type metadatas: List[object]
|
||||
:param ids: ids
|
||||
:type ids: List[str]
|
||||
"""
|
||||
self.collection.add(documents=documents, metadatas=metadatas, ids=ids)
|
||||
|
||||
def _format_result(self, results):
|
||||
def _format_result(self, results: QueryResult) -> list[tuple[Document, float]]:
|
||||
"""
|
||||
Format Chroma results
|
||||
|
||||
:param results: ChromaDB query results to format.
|
||||
:type results: QueryResult
|
||||
:return: Formatted results
|
||||
:rtype: list[tuple[Document, float]]
|
||||
"""
|
||||
return [
|
||||
(Document(page_content=result[0], metadata=result[1] or {}), result[2])
|
||||
for result in zip(
|
||||
@@ -107,11 +138,17 @@ class ChromaDB(BaseVectorDB):
|
||||
|
||||
def query(self, input_query: List[str], n_results: int, where: Dict[str, any]) -> List[str]:
|
||||
"""
|
||||
query contents from vector data base based on vector similarity
|
||||
Query contents from vector data base based on vector similarity
|
||||
|
||||
:param input_query: list of query string
|
||||
:type input_query: List[str]
|
||||
:param n_results: no of similar documents to fetch from database
|
||||
:param where: Optional. to filter data
|
||||
:type n_results: int
|
||||
:param where: to filter data
|
||||
:type where: Dict[str, any]
|
||||
:raises InvalidDimensionException: Dimensions do not match.
|
||||
:return: The content of the document that matched your query.
|
||||
:rtype: List[str]
|
||||
"""
|
||||
try:
|
||||
result = self.collection.query(
|
||||
@@ -132,21 +169,27 @@ class ChromaDB(BaseVectorDB):
|
||||
return contents
|
||||
|
||||
def set_collection_name(self, name: str):
|
||||
"""
|
||||
Set the name of the collection. A collection is an isolated space for vectors.
|
||||
|
||||
:param name: Name of the collection.
|
||||
:type name: str
|
||||
"""
|
||||
self.config.collection_name = name
|
||||
self._get_or_create_collection(self.config.collection_name)
|
||||
|
||||
def count(self) -> int:
|
||||
"""
|
||||
Count the number of embeddings.
|
||||
Count number of documents/chunks embedded in the database.
|
||||
|
||||
:return: The number of embeddings.
|
||||
:return: number of documents
|
||||
:rtype: int
|
||||
"""
|
||||
return self.collection.count()
|
||||
|
||||
def reset(self):
|
||||
"""
|
||||
Resets the database. Deletes all embeddings irreversibly.
|
||||
`App` does not have to be reinitialized after using this method.
|
||||
"""
|
||||
# Delete all data from the database
|
||||
try:
|
||||
|
||||
Reference in New Issue
Block a user