docs: update docstrings (#565)
This commit is contained in:
@@ -7,6 +7,11 @@ class BaseVectorDB(JSONSerializable):
|
||||
"""Base class for vector database."""
|
||||
|
||||
def __init__(self, config: BaseVectorDbConfig):
|
||||
"""Initialize the database. Save the config and client as an attribute.
|
||||
|
||||
:param config: Database configuration class instance.
|
||||
:type config: BaseVectorDbConfig
|
||||
"""
|
||||
self.client = self._get_or_create_db()
|
||||
self.config: BaseVectorDbConfig = config
|
||||
|
||||
@@ -23,25 +28,50 @@ class BaseVectorDB(JSONSerializable):
|
||||
raise NotImplementedError
|
||||
|
||||
def _get_or_create_collection(self):
|
||||
"""Get or create a named collection."""
|
||||
raise NotImplementedError
|
||||
|
||||
def _set_embedder(self, embedder: BaseEmbedder):
|
||||
"""
|
||||
The database needs to access the embedder sometimes, with this method you can persistently set it.
|
||||
|
||||
:param embedder: Embedder to be set as the embedder for this database.
|
||||
:type embedder: BaseEmbedder
|
||||
"""
|
||||
self.embedder = embedder
|
||||
|
||||
def get(self):
|
||||
"""Get database embeddings by id."""
|
||||
raise NotImplementedError
|
||||
|
||||
def add(self):
|
||||
"""Add to database"""
|
||||
raise NotImplementedError
|
||||
|
||||
def query(self):
|
||||
"""Query contents from vector data base based on vector similarity"""
|
||||
raise NotImplementedError
|
||||
|
||||
def count(self):
|
||||
def count(self) -> int:
|
||||
"""
|
||||
Count number of documents/chunks embedded in the database.
|
||||
|
||||
:return: number of documents
|
||||
:rtype: int
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
def reset(self):
|
||||
"""
|
||||
Resets the database. Deletes all embeddings irreversibly.
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
def set_collection_name(self, name: str):
|
||||
"""
|
||||
Set the name of the collection. A collection is an isolated space for vectors.
|
||||
|
||||
:param name: Name of the collection.
|
||||
:type name: str
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
import logging
|
||||
from typing import Any, Dict, List, Optional
|
||||
from typing import Dict, List, Optional
|
||||
|
||||
from chromadb import Collection, QueryResult
|
||||
from langchain.docstore.document import Document
|
||||
|
||||
from embedchain.config import ChromaDbConfig
|
||||
@@ -25,6 +26,11 @@ class ChromaDB(BaseVectorDB):
|
||||
"""Vector database using ChromaDB."""
|
||||
|
||||
def __init__(self, config: Optional[ChromaDbConfig] = None):
|
||||
"""Initialize a new ChromaDB instance
|
||||
|
||||
:param config: Configuration options for Chroma, defaults to None
|
||||
:type config: Optional[ChromaDbConfig], optional
|
||||
"""
|
||||
if config:
|
||||
self.config = config
|
||||
else:
|
||||
@@ -60,11 +66,19 @@ class ChromaDB(BaseVectorDB):
|
||||
self._get_or_create_collection(self.config.collection_name)
|
||||
|
||||
def _get_or_create_db(self):
|
||||
"""Get or create the database."""
|
||||
"""Called during initialization"""
|
||||
return self.client
|
||||
|
||||
def _get_or_create_collection(self, name):
|
||||
"""Get or create the collection."""
|
||||
def _get_or_create_collection(self, name: str) -> Collection:
|
||||
"""
|
||||
Get or create a named collection.
|
||||
|
||||
:param name: Name of the collection
|
||||
:type name: str
|
||||
:raises ValueError: No embedder configured.
|
||||
:return: Created collection
|
||||
:rtype: Collection
|
||||
"""
|
||||
if not hasattr(self, "embedder") or not self.embedder:
|
||||
raise ValueError("Cannot create a Chroma database collection without an embedder.")
|
||||
self.collection = self.client.get_or_create_collection(
|
||||
@@ -76,8 +90,13 @@ class ChromaDB(BaseVectorDB):
|
||||
def get(self, ids: List[str], where: Dict[str, any]) -> List[str]:
|
||||
"""
|
||||
Get existing doc ids present in vector database
|
||||
:param ids: list of doc ids to check for existance
|
||||
|
||||
:param ids: list of doc ids to check for existence
|
||||
:type ids: List[str]
|
||||
:param where: Optional. to filter data
|
||||
:type where: Dict[str, any]
|
||||
:return: Existing documents.
|
||||
:rtype: List[str]
|
||||
"""
|
||||
existing_docs = self.collection.get(
|
||||
ids=ids,
|
||||
@@ -86,16 +105,28 @@ class ChromaDB(BaseVectorDB):
|
||||
|
||||
return set(existing_docs["ids"])
|
||||
|
||||
def add(self, documents: List[str], metadatas: List[object], ids: List[str]) -> Any:
|
||||
def add(self, documents: List[str], metadatas: List[object], ids: List[str]):
|
||||
"""
|
||||
add data in vector database
|
||||
:param documents: list of texts to add
|
||||
:param metadatas: list of metadata associated with docs
|
||||
:param ids: ids of docs
|
||||
Add vectors to chroma database
|
||||
|
||||
:param documents: Documents
|
||||
:type documents: List[str]
|
||||
:param metadatas: Metadatas
|
||||
:type metadatas: List[object]
|
||||
:param ids: ids
|
||||
:type ids: List[str]
|
||||
"""
|
||||
self.collection.add(documents=documents, metadatas=metadatas, ids=ids)
|
||||
|
||||
def _format_result(self, results):
|
||||
def _format_result(self, results: QueryResult) -> list[tuple[Document, float]]:
|
||||
"""
|
||||
Format Chroma results
|
||||
|
||||
:param results: ChromaDB query results to format.
|
||||
:type results: QueryResult
|
||||
:return: Formatted results
|
||||
:rtype: list[tuple[Document, float]]
|
||||
"""
|
||||
return [
|
||||
(Document(page_content=result[0], metadata=result[1] or {}), result[2])
|
||||
for result in zip(
|
||||
@@ -107,11 +138,17 @@ class ChromaDB(BaseVectorDB):
|
||||
|
||||
def query(self, input_query: List[str], n_results: int, where: Dict[str, any]) -> List[str]:
|
||||
"""
|
||||
query contents from vector data base based on vector similarity
|
||||
Query contents from vector data base based on vector similarity
|
||||
|
||||
:param input_query: list of query string
|
||||
:type input_query: List[str]
|
||||
:param n_results: no of similar documents to fetch from database
|
||||
:param where: Optional. to filter data
|
||||
:type n_results: int
|
||||
:param where: to filter data
|
||||
:type where: Dict[str, any]
|
||||
:raises InvalidDimensionException: Dimensions do not match.
|
||||
:return: The content of the document that matched your query.
|
||||
:rtype: List[str]
|
||||
"""
|
||||
try:
|
||||
result = self.collection.query(
|
||||
@@ -132,21 +169,27 @@ class ChromaDB(BaseVectorDB):
|
||||
return contents
|
||||
|
||||
def set_collection_name(self, name: str):
|
||||
"""
|
||||
Set the name of the collection. A collection is an isolated space for vectors.
|
||||
|
||||
:param name: Name of the collection.
|
||||
:type name: str
|
||||
"""
|
||||
self.config.collection_name = name
|
||||
self._get_or_create_collection(self.config.collection_name)
|
||||
|
||||
def count(self) -> int:
|
||||
"""
|
||||
Count the number of embeddings.
|
||||
Count number of documents/chunks embedded in the database.
|
||||
|
||||
:return: The number of embeddings.
|
||||
:return: number of documents
|
||||
:rtype: int
|
||||
"""
|
||||
return self.collection.count()
|
||||
|
||||
def reset(self):
|
||||
"""
|
||||
Resets the database. Deletes all embeddings irreversibly.
|
||||
`App` does not have to be reinitialized after using this method.
|
||||
"""
|
||||
# Delete all data from the database
|
||||
try:
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
from typing import Any, Dict, List
|
||||
from typing import Dict, List, Optional, Set
|
||||
|
||||
try:
|
||||
from elasticsearch import Elasticsearch
|
||||
@@ -15,16 +15,23 @@ from embedchain.vectordb.base_vector_db import BaseVectorDB
|
||||
|
||||
@register_deserializable
|
||||
class ElasticsearchDB(BaseVectorDB):
|
||||
"""
|
||||
Elasticsearch as vector database
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: ElasticsearchDBConfig = None,
|
||||
es_config: ElasticsearchDBConfig = None, # Backwards compatibility
|
||||
config: Optional[ElasticsearchDBConfig] = None,
|
||||
es_config: Optional[ElasticsearchDBConfig] = None, # Backwards compatibility
|
||||
):
|
||||
"""
|
||||
Elasticsearch as vector database
|
||||
:param es_config. elasticsearch database config to be used for connection
|
||||
:param embedding_fn: Function to generate embedding vectors.
|
||||
:param vector_dim: Vector dimension generated by embedding fn
|
||||
"""Elasticsearch as vector database.
|
||||
|
||||
:param config: Elasticsearch database config, defaults to None
|
||||
:type config: ElasticsearchDBConfig, optional
|
||||
:param es_config: `es_config` is supported as an alias for `config` (for backwards compatibility),
|
||||
defaults to None
|
||||
:type es_config: ElasticsearchDBConfig, optional
|
||||
:raises ValueError: No config provided
|
||||
"""
|
||||
if config is None and es_config is None:
|
||||
raise ValueError("ElasticsearchDBConfig is required")
|
||||
@@ -53,16 +60,22 @@ class ElasticsearchDB(BaseVectorDB):
|
||||
self.client.indices.create(index=es_index, body=index_settings)
|
||||
|
||||
def _get_or_create_db(self):
|
||||
"""Called during initialization"""
|
||||
return self.client
|
||||
|
||||
def _get_or_create_collection(self, name):
|
||||
"""Note: nothing to return here. Discuss later"""
|
||||
|
||||
def get(self, ids: List[str], where: Dict[str, any]) -> List[str]:
|
||||
def get(self, ids: List[str], where: Dict[str, any]) -> Set[str]:
|
||||
"""
|
||||
Get existing doc ids present in vector database
|
||||
:param ids: list of doc ids to check for existance
|
||||
:param where: Optional. to filter data
|
||||
|
||||
:param ids: _list of doc ids to check for existance
|
||||
:type ids: List[str]
|
||||
:param where: to filter data
|
||||
:type where: Dict[str, any]
|
||||
:return: ids
|
||||
:rtype: Set[str]
|
||||
"""
|
||||
query = {"bool": {"must": [{"ids": {"values": ids}}]}}
|
||||
if "app_id" in where:
|
||||
@@ -73,13 +86,17 @@ class ElasticsearchDB(BaseVectorDB):
|
||||
ids = [doc["_id"] for doc in docs]
|
||||
return set(ids)
|
||||
|
||||
def add(self, documents: List[str], metadatas: List[object], ids: List[str]) -> Any:
|
||||
"""
|
||||
add data in vector database
|
||||
def add(self, documents: List[str], metadatas: List[object], ids: List[str]):
|
||||
"""add data in vector database
|
||||
|
||||
:param documents: list of texts to add
|
||||
:type documents: List[str]
|
||||
:param metadatas: list of metadata associated with docs
|
||||
:type metadatas: List[object]
|
||||
:param ids: ids of docs
|
||||
:type ids: List[str]
|
||||
"""
|
||||
|
||||
docs = []
|
||||
embeddings = self.embedder.embedding_fn(documents)
|
||||
for id, text, metadata, embeddings in zip(ids, documents, metadatas, embeddings):
|
||||
@@ -92,14 +109,19 @@ class ElasticsearchDB(BaseVectorDB):
|
||||
)
|
||||
bulk(self.client, docs)
|
||||
self.client.indices.refresh(index=self._get_index())
|
||||
return
|
||||
|
||||
def query(self, input_query: List[str], n_results: int, where: Dict[str, any]) -> List[str]:
|
||||
"""
|
||||
query contents from vector data base based on vector similarity
|
||||
|
||||
:param input_query: list of query string
|
||||
:type input_query: List[str]
|
||||
:param n_results: no of similar documents to fetch from database
|
||||
:type n_results: int
|
||||
:param where: Optional. to filter data
|
||||
:type where: Dict[str, any]
|
||||
:return: Database contents that are the result of the query
|
||||
:rtype: List[str]
|
||||
"""
|
||||
input_query_vector = self.embedder.embedding_fn(input_query)
|
||||
query_vector = input_query_vector[0]
|
||||
@@ -122,21 +144,41 @@ class ElasticsearchDB(BaseVectorDB):
|
||||
return contents
|
||||
|
||||
def set_collection_name(self, name: str):
|
||||
"""
|
||||
Set the name of the collection. A collection is an isolated space for vectors.
|
||||
|
||||
:param name: Name of the collection.
|
||||
:type name: str
|
||||
"""
|
||||
self.config.collection_name = name
|
||||
|
||||
def count(self) -> int:
|
||||
"""
|
||||
Count number of documents/chunks embedded in the database.
|
||||
|
||||
:return: number of documents
|
||||
:rtype: int
|
||||
"""
|
||||
query = {"match_all": {}}
|
||||
response = self.client.count(index=self._get_index(), query=query)
|
||||
doc_count = response["count"]
|
||||
return doc_count
|
||||
|
||||
def reset(self):
|
||||
"""
|
||||
Resets the database. Deletes all embeddings irreversibly.
|
||||
"""
|
||||
# Delete all data from the database
|
||||
if self.client.indices.exists(index=self._get_index()):
|
||||
# delete index in Es
|
||||
self.client.indices.delete(index=self._get_index())
|
||||
|
||||
def _get_index(self):
|
||||
def _get_index(self) -> str:
|
||||
"""Get the Elasticsearch index for a collection
|
||||
|
||||
:return: Elasticsearch index
|
||||
:rtype: str
|
||||
"""
|
||||
# NOTE: The method is preferred to an attribute, because if collection name changes,
|
||||
# it's always up-to-date.
|
||||
return f"{self.config.collection_name}_{self.embedder.vector_dimension}"
|
||||
|
||||
Reference in New Issue
Block a user