Added Clip dependency (#778)
This commit is contained in:
@@ -16,15 +16,15 @@ class ImagesLoader(BaseLoader):
|
||||
# load model and image preprocessing
|
||||
from embedchain.models.clip_processor import ClipProcessor
|
||||
|
||||
model, preprocess = ClipProcessor.load_model()
|
||||
model = ClipProcessor.load_model()
|
||||
if os.path.isfile(image_url):
|
||||
data = [ClipProcessor.get_image_features(image_url, model, preprocess)]
|
||||
data = [ClipProcessor.get_image_features(image_url, model)]
|
||||
else:
|
||||
data = []
|
||||
for filename in os.listdir(image_url):
|
||||
filepath = os.path.join(image_url, filename)
|
||||
try:
|
||||
data.append(ClipProcessor.get_image_features(filepath, model, preprocess))
|
||||
data.append(ClipProcessor.get_image_features(filepath, model))
|
||||
except Exception as e:
|
||||
# Log the file that was not loaded
|
||||
logging.exception("Failed to load the file {}. Exception {}".format(filepath, e))
|
||||
|
||||
@@ -1,31 +1,27 @@
|
||||
try:
|
||||
import clip
|
||||
import torch
|
||||
from PIL import Image, UnidentifiedImageError
|
||||
from sentence_transformers import SentenceTransformer
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"Images requires extra dependencies. Install with `pip install 'embedchain[images]' git+https://github.com/openai/CLIP.git#a1d0717`" # noqa: E501
|
||||
"Images requires extra dependencies. Install with `pip install 'embedchain[images]'"
|
||||
) from None
|
||||
|
||||
MODEL_NAME = "ViT-B/32"
|
||||
MODEL_NAME = "clip-ViT-B-32"
|
||||
|
||||
|
||||
class ClipProcessor:
|
||||
@staticmethod
|
||||
def load_model():
|
||||
"""Load data from a director of images."""
|
||||
device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
|
||||
# load model and image preprocessing
|
||||
model, preprocess = clip.load(MODEL_NAME, device=device, jit=False)
|
||||
return model, preprocess
|
||||
model = SentenceTransformer(MODEL_NAME)
|
||||
return model
|
||||
|
||||
@staticmethod
|
||||
def get_image_features(image_url, model, preprocess):
|
||||
def get_image_features(image_url, model):
|
||||
"""
|
||||
Applies the CLIP model to evaluate the vector representation of the supplied image
|
||||
"""
|
||||
device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
try:
|
||||
# load image
|
||||
image = Image.open(image_url)
|
||||
@@ -34,27 +30,15 @@ class ClipProcessor:
|
||||
except UnidentifiedImageError:
|
||||
raise UnidentifiedImageError("The supplied file is not an image`")
|
||||
|
||||
# pre-process image
|
||||
processed_image = preprocess(image).unsqueeze(0).to(device)
|
||||
with torch.no_grad():
|
||||
image_features = model.encode_image(processed_image)
|
||||
image_features /= image_features.norm(dim=-1, keepdim=True)
|
||||
|
||||
image_features = image_features.cpu().detach().numpy().tolist()[0]
|
||||
image_features = model.encode(image)
|
||||
meta_data = {"url": image_url}
|
||||
return {"content": image_url, "embedding": image_features, "meta_data": meta_data}
|
||||
return {"content": image_url, "embedding": image_features.tolist(), "meta_data": meta_data}
|
||||
|
||||
@staticmethod
|
||||
def get_text_features(query):
|
||||
"""
|
||||
Applies the CLIP model to evaluate the vector representation of the supplied text
|
||||
"""
|
||||
device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
|
||||
model, preprocess = ClipProcessor.load_model()
|
||||
text = clip.tokenize(query).to(device)
|
||||
with torch.no_grad():
|
||||
text_features = model.encode_text(text)
|
||||
text_features /= text_features.norm(dim=-1, keepdim=True)
|
||||
|
||||
return text_features.cpu().numpy().tolist()[0]
|
||||
model = ClipProcessor.load_model()
|
||||
text_features = model.encode(query)
|
||||
return text_features.tolist()
|
||||
|
||||
@@ -128,7 +128,8 @@ def detect_datatype(source: Any) -> DataType:
|
||||
formatted_source = format_source(str(source), 30)
|
||||
|
||||
if url:
|
||||
from langchain.document_loaders.youtube import ALLOWED_NETLOCK as YOUTUBE_ALLOWED_NETLOCS
|
||||
from langchain.document_loaders.youtube import \
|
||||
ALLOWED_NETLOCK as YOUTUBE_ALLOWED_NETLOCS
|
||||
|
||||
if url.netloc in YOUTUBE_ALLOWED_NETLOCS:
|
||||
logging.debug(f"Source of `{formatted_source}` detected as `youtube_video`.")
|
||||
|
||||
@@ -1,51 +1,43 @@
|
||||
# import os
|
||||
# import tempfile
|
||||
# import urllib
|
||||
import os
|
||||
import tempfile
|
||||
import urllib
|
||||
|
||||
# import pytest
|
||||
# from PIL import Image
|
||||
from PIL import Image
|
||||
|
||||
# TODO: Uncomment after fixing clip dependency issue
|
||||
# from embedchain.models.clip_processor import ClipProcessor
|
||||
from embedchain.models.clip_processor import ClipProcessor
|
||||
|
||||
|
||||
# class TestClipProcessor:
|
||||
# @pytest.mark.xfail(reason="This test is failing because of the missing CLIP dependency.")
|
||||
# def test_load_model(self):
|
||||
# # Test that the `load_model()` method loads the CLIP model and image preprocessing correctly.
|
||||
# model, preprocess = ClipProcessor.load_model()
|
||||
# assert model is not None
|
||||
# assert preprocess is not None
|
||||
class TestClipProcessor:
|
||||
def test_load_model(self):
|
||||
# Test that the `load_model()` method loads the CLIP model and image preprocessing correctly.
|
||||
model = ClipProcessor.load_model()
|
||||
assert model is not None
|
||||
|
||||
# @pytest.mark.xfail(reason="This test is failing because of the missing CLIP dependency.")
|
||||
# def test_get_image_features(self):
|
||||
# # Clone the image to a temporary folder.
|
||||
# with tempfile.TemporaryDirectory() as tmp_dir:
|
||||
# urllib.request.urlretrieve("https://upload.wikimedia.org/wikipedia/en/a/a9/Example.jpg", "image.jpg")
|
||||
def test_get_image_features(self):
|
||||
# Clone the image to a temporary folder.
|
||||
with tempfile.TemporaryDirectory() as tmp_dir:
|
||||
urllib.request.urlretrieve("https://upload.wikimedia.org/wikipedia/en/a/a9/Example.jpg", "image.jpg")
|
||||
|
||||
# image = Image.open("image.jpg")
|
||||
# image.save(os.path.join(tmp_dir, "image.jpg"))
|
||||
image = Image.open("image.jpg")
|
||||
image.save(os.path.join(tmp_dir, "image.jpg"))
|
||||
|
||||
# # Get the image features.
|
||||
# model, preprocess = ClipProcessor.load_model()
|
||||
# ClipProcessor.get_image_features(os.path.join(tmp_dir, "image.jpg"), model, preprocess)
|
||||
# Get the image features.
|
||||
model = ClipProcessor.load_model()
|
||||
ClipProcessor.get_image_features(os.path.join(tmp_dir, "image.jpg"), model)
|
||||
|
||||
# # Delete the temporary file.
|
||||
# os.remove(os.path.join(tmp_dir, "image.jpg"))
|
||||
# Delete the temporary file.
|
||||
os.remove(os.path.join(tmp_dir, "image.jpg"))
|
||||
|
||||
# @pytest.mark.xfail(reason="This test is failing because of the missing CLIP dependency.")
|
||||
# def test_get_text_features(self):
|
||||
# # Test that the `get_text_features()` method returns a list containing the text embedding.
|
||||
# query = "This is a text query."
|
||||
# model, preprocess = ClipProcessor.load_model()
|
||||
def test_get_text_features(self):
|
||||
# Test that the `get_text_features()` method returns a list containing the text embedding.
|
||||
query = "This is a text query."
|
||||
text_features = ClipProcessor.get_text_features(query)
|
||||
|
||||
# text_features = ClipProcessor.get_text_features(query)
|
||||
# Assert that the text embedding is not None.
|
||||
assert text_features is not None
|
||||
|
||||
# # Assert that the text embedding is not None.
|
||||
# assert text_features is not None
|
||||
# Assert that the text embedding is a list of floats.
|
||||
assert isinstance(text_features, list)
|
||||
|
||||
# # Assert that the text embedding is a list of floats.
|
||||
# assert isinstance(text_features, list)
|
||||
|
||||
# # Assert that the text embedding has the correct length.
|
||||
# assert len(text_features) == 512
|
||||
# Assert that the text embedding has the correct length.
|
||||
assert len(text_features) == 512
|
||||
|
||||
Reference in New Issue
Block a user