Add Groq Support (#1481)

This commit is contained in:
Dev Khant
2024-07-16 23:33:28 +05:30
committed by GitHub
parent 80f145fceb
commit 19637804b3
11 changed files with 369 additions and 6 deletions

View File

@@ -0,0 +1,22 @@
from typing import Optional
from pydantic import BaseModel, Field, field_validator
class EmbedderConfig(BaseModel):
provider: str = Field(
description="Provider of the embedding model (e.g., 'ollama', 'openai')",
default="openai",
)
config: Optional[dict] = Field(
description="Configuration for the specific embedding model", default=None
)
@field_validator("config")
def validate_config(cls, v, values):
provider = values.data.get("provider")
if provider in ["openai", "ollama"]:
return v
else:
raise ValueError(f"Unsupported embedding provider: {provider}")

21
mem0/llms/configs.py Normal file
View File

@@ -0,0 +1,21 @@
from typing import Optional
from pydantic import BaseModel, Field, field_validator
class LlmConfig(BaseModel):
provider: str = Field(
description="Provider of the LLM (e.g., 'ollama', 'openai')", default="openai"
)
config: Optional[dict] = Field(
description="Configuration for the specific LLM", default=None
)
@field_validator("config")
def validate_config(cls, v, values):
provider = values.data.get("provider")
if provider in ["openai", "ollama", "groq"]:
return v
else:
raise ValueError(f"Unsupported LLM provider: {provider}")

40
mem0/llms/groq.py Normal file
View File

@@ -0,0 +1,40 @@
from typing import Dict, List, Optional
from groq import Groq
from mem0.llms.base import LLMBase
class GroqLLM(LLMBase):
def __init__(self, model="llama3-70b-8192"):
self.client = Groq()
self.model = model
def generate_response(
self,
messages: List[Dict[str, str]],
response_format=None,
tools: Optional[List[Dict]] = None,
tool_choice: str = "auto",
):
"""
Generate a response based on the given messages using Groq.
Args:
messages (list): List of message dicts containing 'role' and 'content'.
response_format (str or object, optional): Format of the response. Defaults to "text".
tools (list, optional): List of tools that the model can call. Defaults to None.
tool_choice (str, optional): Tool choice method. Defaults to "auto".
Returns:
str: The generated response.
"""
params = {"model": self.model, "messages": messages}
if response_format:
params["response_format"] = response_format
if tools:
params["tools"] = tools
params["tool_choice"] = tool_choice
response = self.client.chat.completions.create(**params)
return response

View File

@@ -7,8 +7,6 @@ from typing import Any, Dict, Optional
from pydantic import BaseModel, Field, ValidationError
from mem0.embeddings.openai import OpenAIEmbedding
from mem0.llms.openai import OpenAILLM
from mem0.llms.utils.tools import (
ADD_MEMORY_TOOL,
DELETE_MEMORY_TOOL,
@@ -21,7 +19,10 @@ from mem0.memory.storage import SQLiteManager
from mem0.memory.telemetry import capture_event
from mem0.memory.utils import get_update_memory_messages
from mem0.vector_stores.configs import VectorStoreConfig
from mem0.llms.configs import LlmConfig
from mem0.embeddings.configs import EmbedderConfig
from mem0.vector_stores.qdrant import Qdrant
from mem0.utils.factory import LlmFactory, EmbedderFactory
# Setup user config
setup_config()
@@ -44,6 +45,14 @@ class MemoryConfig(BaseModel):
description="Configuration for the vector store",
default_factory=VectorStoreConfig,
)
llm: LlmConfig = Field(
description="Configuration for the language model",
default_factory=LlmConfig,
)
embedder: EmbedderConfig = Field(
description="Configuration for the embedding model",
default_factory=EmbedderConfig,
)
history_db_path: str = Field(
description="Path to the history database",
default=os.path.join(mem0_dir, "history.db"),
@@ -57,7 +66,7 @@ class MemoryConfig(BaseModel):
class Memory(MemoryBase):
def __init__(self, config: MemoryConfig = MemoryConfig()):
self.config = config
self.embedding_model = OpenAIEmbedding()
self.embedding_model = EmbedderFactory.create(self.config.embedder.provider)
# Initialize the appropriate vector store based on the configuration
vector_store_config = self.config.vector_store.config
if self.config.vector_store.provider == "qdrant":
@@ -73,7 +82,7 @@ class Memory(MemoryBase):
f"Unsupported vector store type: {self.config.vector_store_type}"
)
self.llm = OpenAILLM()
self.llm = LlmFactory.create(self.config.llm.provider)
self.db = SQLiteManager(self.config.history_db_path)
self.collection_name = self.config.collection_name
self.vector_store.create_col(

41
mem0/utils/factory.py Normal file
View File

@@ -0,0 +1,41 @@
import importlib
def load_class(class_type):
module_path, class_name = class_type.rsplit(".", 1)
module = importlib.import_module(module_path)
return getattr(module, class_name)
class LlmFactory:
provider_to_class = {
"ollama": "mem0.llms.ollama.py.OllamaLLM",
"openai": "mem0.llms.openai.OpenAILLM",
"groq": "mem0.llms.groq.GroqLLM"
}
@classmethod
def create(cls, provider_name):
class_type = cls.provider_to_class.get(provider_name)
if class_type:
llm_instance = load_class(class_type)()
return llm_instance
else:
raise ValueError(f"Unsupported Llm provider: {provider_name}")
class EmbedderFactory:
provider_to_class = {
"openai": "mem0.embeddings.openai.OpenAIEmbedding",
"ollama": "mem0.embeddings.ollama.OllamaEmbedding",
"huggingface": "mem0.embeddings.huggingface.HuggingFaceEmbedding"
}
@classmethod
def create(cls, provider_name):
class_type = cls.provider_to_class.get(provider_name)
if class_type:
embedder_instance = load_class(class_type)()
return embedder_instance
else:
raise ValueError(f"Unsupported Embedder provider: {provider_name}")