Add Groq Support (#1481)
This commit is contained in:
66
docs/llms.mdx
Normal file
66
docs/llms.mdx
Normal file
@@ -0,0 +1,66 @@
|
||||
---
|
||||
title: 🤖 Large language models (LLMs)
|
||||
---
|
||||
|
||||
## Overview
|
||||
|
||||
Mem0 includes built-in support for various popular large language models. Memory can utilize the LLM provided by the user, ensuring efficient use for specific needs.
|
||||
|
||||
<CardGroup cols={4}>
|
||||
<Card title="OpenAI" href="#openai"></Card>
|
||||
<Card title="Groq" href="#groq"></Card>
|
||||
</CardGroup>
|
||||
|
||||
## OpenAI
|
||||
|
||||
To use OpenAI LLM models, you have to set the `OPENAI_API_KEY` environment variable. You can obtain the OpenAI API key from the [OpenAI Platform](https://platform.openai.com/account/api-keys).
|
||||
|
||||
Once you have obtained the key, you can use it like this:
|
||||
|
||||
```python
|
||||
import os
|
||||
from mem0 import Memory
|
||||
|
||||
os.environ['OPENAI_API_KEY'] = 'xxx'
|
||||
|
||||
config = {
|
||||
"llm": {
|
||||
"provider": "openai",
|
||||
"config": {
|
||||
"model": "gpt-4o",
|
||||
"temperature": 0.2,
|
||||
"max_tokens": 1500,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
m = Memory.from_config(config)
|
||||
m.add("Likes to play cricket on weekends", user_id="alice", metadata={"category": "hobbies"})
|
||||
```
|
||||
|
||||
## Groq
|
||||
|
||||
[Groq](https://groq.com/) is the creator of the world's first Language Processing Unit (LPU), providing exceptional speed performance for AI workloads running on their LPU Inference Engine.
|
||||
|
||||
In order to use LLMs from Groq, go to their [platform](https://console.groq.com/keys) and get the API key. Set the API key as `GROQ_API_KEY` environment variable to use the model as given below in the example.
|
||||
|
||||
```python
|
||||
import os
|
||||
from mem0 import Memory
|
||||
|
||||
os.environ['GROQ_API_KEY'] = 'xxx'
|
||||
|
||||
config = {
|
||||
"llm": {
|
||||
"provider": "groq",
|
||||
"config": {
|
||||
"model": "mixtral-8x7b-32768",
|
||||
"temperature": 0.1,
|
||||
"max_tokens": 1000,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
m = Memory.from_config(config)
|
||||
m.add("Likes to play cricket on weekends", user_id="alice", metadata={"category": "hobbies"})
|
||||
```
|
||||
@@ -53,6 +53,12 @@
|
||||
"quickstart"
|
||||
]
|
||||
},
|
||||
{
|
||||
"group": "LLMs",
|
||||
"pages": [
|
||||
"llms"
|
||||
]
|
||||
},
|
||||
{
|
||||
"group": "💡 Examples",
|
||||
"pages": [
|
||||
|
||||
22
mem0/embeddings/configs.py
Normal file
22
mem0/embeddings/configs.py
Normal file
@@ -0,0 +1,22 @@
|
||||
from typing import Optional
|
||||
|
||||
from pydantic import BaseModel, Field, field_validator
|
||||
|
||||
|
||||
class EmbedderConfig(BaseModel):
|
||||
provider: str = Field(
|
||||
description="Provider of the embedding model (e.g., 'ollama', 'openai')",
|
||||
default="openai",
|
||||
)
|
||||
config: Optional[dict] = Field(
|
||||
description="Configuration for the specific embedding model", default=None
|
||||
)
|
||||
|
||||
@field_validator("config")
|
||||
def validate_config(cls, v, values):
|
||||
provider = values.data.get("provider")
|
||||
if provider in ["openai", "ollama"]:
|
||||
return v
|
||||
else:
|
||||
raise ValueError(f"Unsupported embedding provider: {provider}")
|
||||
|
||||
21
mem0/llms/configs.py
Normal file
21
mem0/llms/configs.py
Normal file
@@ -0,0 +1,21 @@
|
||||
from typing import Optional
|
||||
|
||||
from pydantic import BaseModel, Field, field_validator
|
||||
|
||||
|
||||
class LlmConfig(BaseModel):
|
||||
provider: str = Field(
|
||||
description="Provider of the LLM (e.g., 'ollama', 'openai')", default="openai"
|
||||
)
|
||||
config: Optional[dict] = Field(
|
||||
description="Configuration for the specific LLM", default=None
|
||||
)
|
||||
|
||||
@field_validator("config")
|
||||
def validate_config(cls, v, values):
|
||||
provider = values.data.get("provider")
|
||||
if provider in ["openai", "ollama", "groq"]:
|
||||
return v
|
||||
else:
|
||||
raise ValueError(f"Unsupported LLM provider: {provider}")
|
||||
|
||||
40
mem0/llms/groq.py
Normal file
40
mem0/llms/groq.py
Normal file
@@ -0,0 +1,40 @@
|
||||
from typing import Dict, List, Optional
|
||||
|
||||
from groq import Groq
|
||||
|
||||
from mem0.llms.base import LLMBase
|
||||
|
||||
|
||||
class GroqLLM(LLMBase):
|
||||
def __init__(self, model="llama3-70b-8192"):
|
||||
self.client = Groq()
|
||||
self.model = model
|
||||
|
||||
def generate_response(
|
||||
self,
|
||||
messages: List[Dict[str, str]],
|
||||
response_format=None,
|
||||
tools: Optional[List[Dict]] = None,
|
||||
tool_choice: str = "auto",
|
||||
):
|
||||
"""
|
||||
Generate a response based on the given messages using Groq.
|
||||
|
||||
Args:
|
||||
messages (list): List of message dicts containing 'role' and 'content'.
|
||||
response_format (str or object, optional): Format of the response. Defaults to "text".
|
||||
tools (list, optional): List of tools that the model can call. Defaults to None.
|
||||
tool_choice (str, optional): Tool choice method. Defaults to "auto".
|
||||
|
||||
Returns:
|
||||
str: The generated response.
|
||||
"""
|
||||
params = {"model": self.model, "messages": messages}
|
||||
if response_format:
|
||||
params["response_format"] = response_format
|
||||
if tools:
|
||||
params["tools"] = tools
|
||||
params["tool_choice"] = tool_choice
|
||||
|
||||
response = self.client.chat.completions.create(**params)
|
||||
return response
|
||||
@@ -7,8 +7,6 @@ from typing import Any, Dict, Optional
|
||||
|
||||
from pydantic import BaseModel, Field, ValidationError
|
||||
|
||||
from mem0.embeddings.openai import OpenAIEmbedding
|
||||
from mem0.llms.openai import OpenAILLM
|
||||
from mem0.llms.utils.tools import (
|
||||
ADD_MEMORY_TOOL,
|
||||
DELETE_MEMORY_TOOL,
|
||||
@@ -21,7 +19,10 @@ from mem0.memory.storage import SQLiteManager
|
||||
from mem0.memory.telemetry import capture_event
|
||||
from mem0.memory.utils import get_update_memory_messages
|
||||
from mem0.vector_stores.configs import VectorStoreConfig
|
||||
from mem0.llms.configs import LlmConfig
|
||||
from mem0.embeddings.configs import EmbedderConfig
|
||||
from mem0.vector_stores.qdrant import Qdrant
|
||||
from mem0.utils.factory import LlmFactory, EmbedderFactory
|
||||
|
||||
# Setup user config
|
||||
setup_config()
|
||||
@@ -44,6 +45,14 @@ class MemoryConfig(BaseModel):
|
||||
description="Configuration for the vector store",
|
||||
default_factory=VectorStoreConfig,
|
||||
)
|
||||
llm: LlmConfig = Field(
|
||||
description="Configuration for the language model",
|
||||
default_factory=LlmConfig,
|
||||
)
|
||||
embedder: EmbedderConfig = Field(
|
||||
description="Configuration for the embedding model",
|
||||
default_factory=EmbedderConfig,
|
||||
)
|
||||
history_db_path: str = Field(
|
||||
description="Path to the history database",
|
||||
default=os.path.join(mem0_dir, "history.db"),
|
||||
@@ -57,7 +66,7 @@ class MemoryConfig(BaseModel):
|
||||
class Memory(MemoryBase):
|
||||
def __init__(self, config: MemoryConfig = MemoryConfig()):
|
||||
self.config = config
|
||||
self.embedding_model = OpenAIEmbedding()
|
||||
self.embedding_model = EmbedderFactory.create(self.config.embedder.provider)
|
||||
# Initialize the appropriate vector store based on the configuration
|
||||
vector_store_config = self.config.vector_store.config
|
||||
if self.config.vector_store.provider == "qdrant":
|
||||
@@ -73,7 +82,7 @@ class Memory(MemoryBase):
|
||||
f"Unsupported vector store type: {self.config.vector_store_type}"
|
||||
)
|
||||
|
||||
self.llm = OpenAILLM()
|
||||
self.llm = LlmFactory.create(self.config.llm.provider)
|
||||
self.db = SQLiteManager(self.config.history_db_path)
|
||||
self.collection_name = self.config.collection_name
|
||||
self.vector_store.create_col(
|
||||
|
||||
41
mem0/utils/factory.py
Normal file
41
mem0/utils/factory.py
Normal file
@@ -0,0 +1,41 @@
|
||||
import importlib
|
||||
|
||||
|
||||
def load_class(class_type):
|
||||
module_path, class_name = class_type.rsplit(".", 1)
|
||||
module = importlib.import_module(module_path)
|
||||
return getattr(module, class_name)
|
||||
|
||||
|
||||
class LlmFactory:
|
||||
provider_to_class = {
|
||||
"ollama": "mem0.llms.ollama.py.OllamaLLM",
|
||||
"openai": "mem0.llms.openai.OpenAILLM",
|
||||
"groq": "mem0.llms.groq.GroqLLM"
|
||||
}
|
||||
|
||||
@classmethod
|
||||
def create(cls, provider_name):
|
||||
class_type = cls.provider_to_class.get(provider_name)
|
||||
if class_type:
|
||||
llm_instance = load_class(class_type)()
|
||||
return llm_instance
|
||||
else:
|
||||
raise ValueError(f"Unsupported Llm provider: {provider_name}")
|
||||
|
||||
class EmbedderFactory:
|
||||
provider_to_class = {
|
||||
"openai": "mem0.embeddings.openai.OpenAIEmbedding",
|
||||
"ollama": "mem0.embeddings.ollama.OllamaEmbedding",
|
||||
"huggingface": "mem0.embeddings.huggingface.HuggingFaceEmbedding"
|
||||
}
|
||||
|
||||
@classmethod
|
||||
def create(cls, provider_name):
|
||||
class_type = cls.provider_to_class.get(provider_name)
|
||||
if class_type:
|
||||
embedder_instance = load_class(class_type)()
|
||||
return embedder_instance
|
||||
else:
|
||||
raise ValueError(f"Unsupported Embedder provider: {provider_name}")
|
||||
|
||||
23
poetry.lock
generated
23
poetry.lock
generated
@@ -1,4 +1,4 @@
|
||||
# This file is automatically @generated by Poetry 1.5.1 and should not be changed by hand.
|
||||
# This file is automatically @generated by Poetry 1.8.3 and should not be changed by hand.
|
||||
|
||||
[[package]]
|
||||
name = "annotated-types"
|
||||
@@ -370,6 +370,25 @@ files = [
|
||||
[package.extras]
|
||||
tests = ["asttokens (>=2.1.0)", "coverage", "coverage-enable-subprocess", "ipython", "littleutils", "pytest", "rich"]
|
||||
|
||||
[[package]]
|
||||
name = "groq"
|
||||
version = "0.9.0"
|
||||
description = "The official Python library for the groq API"
|
||||
optional = false
|
||||
python-versions = ">=3.7"
|
||||
files = [
|
||||
{file = "groq-0.9.0-py3-none-any.whl", hash = "sha256:d0e46f4ad645504672bb09c8100af3ced3a7db0d5119dc13e4aca535fc455874"},
|
||||
{file = "groq-0.9.0.tar.gz", hash = "sha256:130ed5e35d3acfaab46b9e7a078eeaebf91052f4a9d71f86f87fb319b5fec332"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
anyio = ">=3.5.0,<5"
|
||||
distro = ">=1.7.0,<2"
|
||||
httpx = ">=0.23.0,<1"
|
||||
pydantic = ">=1.9.0,<3"
|
||||
sniffio = "*"
|
||||
typing-extensions = ">=4.7,<5"
|
||||
|
||||
[[package]]
|
||||
name = "grpcio"
|
||||
version = "1.64.1"
|
||||
@@ -1707,4 +1726,4 @@ test = ["big-O", "importlib-resources", "jaraco.functools", "jaraco.itertools",
|
||||
[metadata]
|
||||
lock-version = "2.0"
|
||||
python-versions = "^3.8"
|
||||
content-hash = "5138c101a58db8dbddcb640545a5b2b4fc482f9e555008d117e315ae292d7697"
|
||||
content-hash = "7216c3479e9bce779f99016825bfb726399ffb0ac5f942ac73b899fc373efd37"
|
||||
|
||||
@@ -20,6 +20,7 @@ qdrant-client = "^1.9.1"
|
||||
pydantic = "^2.7.3"
|
||||
openai = "^1.33.0"
|
||||
posthog = "^3.5.0"
|
||||
groq = "^0.9.0"
|
||||
|
||||
|
||||
[tool.poetry.group.test.dependencies]
|
||||
|
||||
69
tests/llms/test_groq.py
Normal file
69
tests/llms/test_groq.py
Normal file
@@ -0,0 +1,69 @@
|
||||
import pytest
|
||||
from unittest.mock import Mock, patch
|
||||
from mem0.llms.groq import GroqLLM
|
||||
|
||||
@pytest.fixture
|
||||
def mock_groq_client():
|
||||
with patch('mem0.llms.groq.Groq') as mock_groq:
|
||||
mock_client = Mock()
|
||||
mock_groq.return_value = mock_client
|
||||
yield mock_client
|
||||
|
||||
|
||||
def test_generate_response_without_tools(mock_groq_client):
|
||||
llm = GroqLLM()
|
||||
messages = [
|
||||
{"role": "system", "content": "You are a helpful assistant."},
|
||||
{"role": "user", "content": "Hello, how are you?"}
|
||||
]
|
||||
|
||||
mock_response = Mock()
|
||||
mock_response.choices = [Mock(message=Mock(content="I'm doing well, thank you for asking!"))]
|
||||
mock_groq_client.chat.completions.create.return_value = mock_response
|
||||
|
||||
response = llm.generate_response(messages)
|
||||
|
||||
mock_groq_client.chat.completions.create.assert_called_once_with(
|
||||
model="llama3-70b-8192",
|
||||
messages=messages
|
||||
)
|
||||
assert response.choices[0].message.content == "I'm doing well, thank you for asking!"
|
||||
|
||||
|
||||
def test_generate_response_with_tools(mock_groq_client):
|
||||
llm = GroqLLM()
|
||||
messages = [
|
||||
{"role": "system", "content": "You are a helpful assistant."},
|
||||
{"role": "user", "content": "Add a new memory: Today is a sunny day."}
|
||||
]
|
||||
tools = [
|
||||
{
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": "add_memory",
|
||||
"description": "Add a memory",
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"data": {"type": "string", "description": "Data to add to memory"}
|
||||
},
|
||||
"required": ["data"],
|
||||
},
|
||||
},
|
||||
}
|
||||
]
|
||||
|
||||
mock_response = Mock()
|
||||
mock_response.choices = [Mock(message=Mock(content="Memory added successfully."))]
|
||||
mock_groq_client.chat.completions.create.return_value = mock_response
|
||||
|
||||
response = llm.generate_response(messages, tools=tools)
|
||||
|
||||
mock_groq_client.chat.completions.create.assert_called_once_with(
|
||||
model="llama3-70b-8192",
|
||||
messages=messages,
|
||||
tools=tools,
|
||||
tool_choice="auto"
|
||||
)
|
||||
assert response.choices[0].message.content == "Memory added successfully."
|
||||
|
||||
69
tests/llms/test_openai.py
Normal file
69
tests/llms/test_openai.py
Normal file
@@ -0,0 +1,69 @@
|
||||
import pytest
|
||||
from unittest.mock import Mock, patch
|
||||
from mem0.llms.openai import OpenAILLM
|
||||
|
||||
@pytest.fixture
|
||||
def mock_groq_client():
|
||||
with patch('mem0.llms.openai.OpenAI') as mock_groq:
|
||||
mock_client = Mock()
|
||||
mock_groq.return_value = mock_client
|
||||
yield mock_client
|
||||
|
||||
|
||||
def test_generate_response_without_tools(mock_groq_client):
|
||||
llm = OpenAILLM()
|
||||
messages = [
|
||||
{"role": "system", "content": "You are a helpful assistant."},
|
||||
{"role": "user", "content": "Hello, how are you?"}
|
||||
]
|
||||
|
||||
mock_response = Mock()
|
||||
mock_response.choices = [Mock(message=Mock(content="I'm doing well, thank you for asking!"))]
|
||||
mock_groq_client.chat.completions.create.return_value = mock_response
|
||||
|
||||
response = llm.generate_response(messages)
|
||||
|
||||
mock_groq_client.chat.completions.create.assert_called_once_with(
|
||||
model="gpt-4o",
|
||||
messages=messages
|
||||
)
|
||||
assert response.choices[0].message.content == "I'm doing well, thank you for asking!"
|
||||
|
||||
|
||||
def test_generate_response_with_tools(mock_groq_client):
|
||||
llm = OpenAILLM()
|
||||
messages = [
|
||||
{"role": "system", "content": "You are a helpful assistant."},
|
||||
{"role": "user", "content": "Add a new memory: Today is a sunny day."}
|
||||
]
|
||||
tools = [
|
||||
{
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": "add_memory",
|
||||
"description": "Add a memory",
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"data": {"type": "string", "description": "Data to add to memory"}
|
||||
},
|
||||
"required": ["data"],
|
||||
},
|
||||
},
|
||||
}
|
||||
]
|
||||
|
||||
mock_response = Mock()
|
||||
mock_response.choices = [Mock(message=Mock(content="Memory added successfully."))]
|
||||
mock_groq_client.chat.completions.create.return_value = mock_response
|
||||
|
||||
response = llm.generate_response(messages, tools=tools)
|
||||
|
||||
mock_groq_client.chat.completions.create.assert_called_once_with(
|
||||
model="gpt-4o",
|
||||
messages=messages,
|
||||
tools=tools,
|
||||
tool_choice="auto"
|
||||
)
|
||||
assert response.choices[0].message.content == "Memory added successfully."
|
||||
|
||||
Reference in New Issue
Block a user