fix: use openai llm via langchain (#670)
Co-authored-by: Deshraj Yadav <deshrajdry@gmail.com>
This commit is contained in:
@@ -21,7 +21,8 @@ from embedchain.embedder.base import BaseEmbedder
|
|||||||
from embedchain.helper.json_serializable import JSONSerializable
|
from embedchain.helper.json_serializable import JSONSerializable
|
||||||
from embedchain.llm.base import BaseLlm
|
from embedchain.llm.base import BaseLlm
|
||||||
from embedchain.loaders.base_loader import BaseLoader
|
from embedchain.loaders.base_loader import BaseLoader
|
||||||
from embedchain.models.data_type import DataType, DirectDataType, IndirectDataType, SpecialDataType
|
from embedchain.models.data_type import (DataType, DirectDataType,
|
||||||
|
IndirectDataType, SpecialDataType)
|
||||||
from embedchain.utils import detect_datatype
|
from embedchain.utils import detect_datatype
|
||||||
from embedchain.vectordb.base import BaseVectorDB
|
from embedchain.vectordb.base import BaseVectorDB
|
||||||
|
|
||||||
|
|||||||
@@ -1,6 +1,7 @@
|
|||||||
from typing import Optional
|
from typing import Optional
|
||||||
|
|
||||||
import openai
|
from langchain.chat_models import ChatOpenAI
|
||||||
|
from langchain.schema import HumanMessage, SystemMessage
|
||||||
|
|
||||||
from embedchain.config import BaseLlmConfig
|
from embedchain.config import BaseLlmConfig
|
||||||
from embedchain.helper.json_serializable import register_deserializable
|
from embedchain.helper.json_serializable import register_deserializable
|
||||||
@@ -12,31 +13,32 @@ class OpenAILlm(BaseLlm):
|
|||||||
def __init__(self, config: Optional[BaseLlmConfig] = None):
|
def __init__(self, config: Optional[BaseLlmConfig] = None):
|
||||||
super().__init__(config=config)
|
super().__init__(config=config)
|
||||||
|
|
||||||
# NOTE: This class does not use langchain. One reason is that `top_p` is not supported.
|
|
||||||
|
|
||||||
def get_llm_model_answer(self, prompt):
|
def get_llm_model_answer(self, prompt):
|
||||||
messages = []
|
response = OpenAILlm._get_answer(prompt, self.config)
|
||||||
if self.config.system_prompt:
|
|
||||||
messages.append({"role": "system", "content": self.config.system_prompt})
|
|
||||||
messages.append({"role": "user", "content": prompt})
|
|
||||||
response = openai.ChatCompletion.create(
|
|
||||||
model=self.config.model or "gpt-3.5-turbo-0613",
|
|
||||||
messages=messages,
|
|
||||||
temperature=self.config.temperature,
|
|
||||||
max_tokens=self.config.max_tokens,
|
|
||||||
top_p=self.config.top_p,
|
|
||||||
stream=self.config.stream,
|
|
||||||
)
|
|
||||||
|
|
||||||
if self.config.stream:
|
if self.config.stream:
|
||||||
return self._stream_llm_model_response(response)
|
return response
|
||||||
else:
|
else:
|
||||||
return response["choices"][0]["message"]["content"]
|
return response.content
|
||||||
|
|
||||||
def _stream_llm_model_response(self, response):
|
def _get_answer(prompt: str, config: BaseLlmConfig) -> str:
|
||||||
"""
|
messages = []
|
||||||
This is a generator for streaming response from the OpenAI completions API
|
if config.system_prompt:
|
||||||
"""
|
messages.append(SystemMessage(content=config.system_prompt))
|
||||||
for line in response:
|
messages.append(HumanMessage(content=prompt))
|
||||||
chunk = line["choices"][0].get("delta", {}).get("content", "")
|
kwargs = {
|
||||||
yield chunk
|
"model": config.model or "gpt-3.5-turbo-0613",
|
||||||
|
"temperature": config.temperature,
|
||||||
|
"max_tokens": config.max_tokens,
|
||||||
|
"model_kwargs": {},
|
||||||
|
}
|
||||||
|
if config.top_p:
|
||||||
|
kwargs["model_kwargs"]["top_p"] = config.top_p
|
||||||
|
if config.stream:
|
||||||
|
from langchain.callbacks.streaming_stdout import \
|
||||||
|
StreamingStdOutCallbackHandler
|
||||||
|
|
||||||
|
chat = ChatOpenAI(**kwargs, streaming=config.stream, callbacks=[StreamingStdOutCallbackHandler()])
|
||||||
|
else:
|
||||||
|
chat = ChatOpenAI(**kwargs)
|
||||||
|
return chat(messages)
|
||||||
|
|||||||
@@ -46,41 +46,29 @@ class TestApp(unittest.TestCase):
|
|||||||
self.assertEqual(input_query_arg, "Test query")
|
self.assertEqual(input_query_arg, "Test query")
|
||||||
mock_answer.assert_called_once()
|
mock_answer.assert_called_once()
|
||||||
|
|
||||||
@patch("openai.ChatCompletion.create")
|
@patch("embedchain.llm.openai.OpenAILlm._get_answer")
|
||||||
def test_query_config_app_passing(self, mock_create):
|
def test_query_config_app_passing(self, mock_get_answer):
|
||||||
mock_create.return_value = {"choices": [{"message": {"content": "response"}}]} # Mock response
|
mock_get_answer.return_value = MagicMock()
|
||||||
|
mock_get_answer.return_value.content = "Test answer"
|
||||||
|
|
||||||
config = AppConfig(collect_metrics=False)
|
config = AppConfig(collect_metrics=False)
|
||||||
chat_config = BaseLlmConfig(system_prompt="Test system prompt")
|
chat_config = BaseLlmConfig(system_prompt="Test system prompt")
|
||||||
app = App(config=config, llm_config=chat_config)
|
app = App(config=config, llm_config=chat_config)
|
||||||
|
answer = app.llm.get_llm_model_answer("Test query")
|
||||||
|
|
||||||
app.llm.get_llm_model_answer("Test query")
|
self.assertEqual(app.llm.config.system_prompt, "Test system prompt")
|
||||||
|
self.assertEqual(answer, "Test answer")
|
||||||
# Test system_prompt: Check that the 'create' method was called with the correct 'messages' argument
|
|
||||||
messages_arg = mock_create.call_args.kwargs["messages"]
|
|
||||||
self.assertTrue(messages_arg[0].get("role"), "system")
|
|
||||||
self.assertEqual(messages_arg[0].get("content"), "Test system prompt")
|
|
||||||
self.assertTrue(messages_arg[1].get("role"), "user")
|
|
||||||
self.assertEqual(messages_arg[1].get("content"), "Test query")
|
|
||||||
|
|
||||||
# TODO: Add tests for other config variables
|
|
||||||
|
|
||||||
@patch("openai.ChatCompletion.create")
|
|
||||||
def test_app_passing(self, mock_create):
|
|
||||||
mock_create.return_value = {"choices": [{"message": {"content": "response"}}]} # Mock response
|
|
||||||
|
|
||||||
|
@patch("embedchain.llm.openai.OpenAILlm._get_answer")
|
||||||
|
def test_app_passing(self, mock_get_answer):
|
||||||
|
mock_get_answer.return_value = MagicMock()
|
||||||
|
mock_get_answer.return_value.content = "Test answer"
|
||||||
config = AppConfig(collect_metrics=False)
|
config = AppConfig(collect_metrics=False)
|
||||||
chat_config = BaseLlmConfig()
|
chat_config = BaseLlmConfig()
|
||||||
app = App(config=config, llm_config=chat_config, system_prompt="Test system prompt")
|
app = App(config=config, llm_config=chat_config, system_prompt="Test system prompt")
|
||||||
|
answer = app.llm.get_llm_model_answer("Test query")
|
||||||
self.assertEqual(app.llm.config.system_prompt, "Test system prompt")
|
self.assertEqual(app.llm.config.system_prompt, "Test system prompt")
|
||||||
|
self.assertEqual(answer, "Test answer")
|
||||||
app.llm.get_llm_model_answer("Test query")
|
|
||||||
|
|
||||||
# Test system_prompt: Check that the 'create' method was called with the correct 'messages' argument
|
|
||||||
messages_arg = mock_create.call_args.kwargs["messages"]
|
|
||||||
self.assertTrue(messages_arg[0].get("role"), "system")
|
|
||||||
self.assertEqual(messages_arg[0].get("content"), "Test system prompt")
|
|
||||||
|
|
||||||
@patch("chromadb.api.models.Collection.Collection.add", MagicMock)
|
@patch("chromadb.api.models.Collection.Collection.add", MagicMock)
|
||||||
def test_query_with_where_in_params(self):
|
def test_query_with_where_in_params(self):
|
||||||
|
|||||||
Reference in New Issue
Block a user