fix: use openai llm via langchain (#670)

Co-authored-by: Deshraj Yadav <deshrajdry@gmail.com>
This commit is contained in:
Taranjeet Singh
2023-09-26 22:04:02 -07:00
committed by GitHub
parent 9ca7a0d6d1
commit 0f16c72762
3 changed files with 41 additions and 50 deletions

View File

@@ -21,7 +21,8 @@ from embedchain.embedder.base import BaseEmbedder
from embedchain.helper.json_serializable import JSONSerializable
from embedchain.llm.base import BaseLlm
from embedchain.loaders.base_loader import BaseLoader
from embedchain.models.data_type import DataType, DirectDataType, IndirectDataType, SpecialDataType
from embedchain.models.data_type import (DataType, DirectDataType,
IndirectDataType, SpecialDataType)
from embedchain.utils import detect_datatype
from embedchain.vectordb.base import BaseVectorDB

View File

@@ -1,6 +1,7 @@
from typing import Optional
import openai
from langchain.chat_models import ChatOpenAI
from langchain.schema import HumanMessage, SystemMessage
from embedchain.config import BaseLlmConfig
from embedchain.helper.json_serializable import register_deserializable
@@ -12,31 +13,32 @@ class OpenAILlm(BaseLlm):
def __init__(self, config: Optional[BaseLlmConfig] = None):
super().__init__(config=config)
# NOTE: This class does not use langchain. One reason is that `top_p` is not supported.
def get_llm_model_answer(self, prompt):
messages = []
if self.config.system_prompt:
messages.append({"role": "system", "content": self.config.system_prompt})
messages.append({"role": "user", "content": prompt})
response = openai.ChatCompletion.create(
model=self.config.model or "gpt-3.5-turbo-0613",
messages=messages,
temperature=self.config.temperature,
max_tokens=self.config.max_tokens,
top_p=self.config.top_p,
stream=self.config.stream,
)
response = OpenAILlm._get_answer(prompt, self.config)
if self.config.stream:
return self._stream_llm_model_response(response)
return response
else:
return response["choices"][0]["message"]["content"]
return response.content
def _stream_llm_model_response(self, response):
"""
This is a generator for streaming response from the OpenAI completions API
"""
for line in response:
chunk = line["choices"][0].get("delta", {}).get("content", "")
yield chunk
def _get_answer(prompt: str, config: BaseLlmConfig) -> str:
messages = []
if config.system_prompt:
messages.append(SystemMessage(content=config.system_prompt))
messages.append(HumanMessage(content=prompt))
kwargs = {
"model": config.model or "gpt-3.5-turbo-0613",
"temperature": config.temperature,
"max_tokens": config.max_tokens,
"model_kwargs": {},
}
if config.top_p:
kwargs["model_kwargs"]["top_p"] = config.top_p
if config.stream:
from langchain.callbacks.streaming_stdout import \
StreamingStdOutCallbackHandler
chat = ChatOpenAI(**kwargs, streaming=config.stream, callbacks=[StreamingStdOutCallbackHandler()])
else:
chat = ChatOpenAI(**kwargs)
return chat(messages)

View File

@@ -46,41 +46,29 @@ class TestApp(unittest.TestCase):
self.assertEqual(input_query_arg, "Test query")
mock_answer.assert_called_once()
@patch("openai.ChatCompletion.create")
def test_query_config_app_passing(self, mock_create):
mock_create.return_value = {"choices": [{"message": {"content": "response"}}]} # Mock response
@patch("embedchain.llm.openai.OpenAILlm._get_answer")
def test_query_config_app_passing(self, mock_get_answer):
mock_get_answer.return_value = MagicMock()
mock_get_answer.return_value.content = "Test answer"
config = AppConfig(collect_metrics=False)
chat_config = BaseLlmConfig(system_prompt="Test system prompt")
app = App(config=config, llm_config=chat_config)
answer = app.llm.get_llm_model_answer("Test query")
app.llm.get_llm_model_answer("Test query")
# Test system_prompt: Check that the 'create' method was called with the correct 'messages' argument
messages_arg = mock_create.call_args.kwargs["messages"]
self.assertTrue(messages_arg[0].get("role"), "system")
self.assertEqual(messages_arg[0].get("content"), "Test system prompt")
self.assertTrue(messages_arg[1].get("role"), "user")
self.assertEqual(messages_arg[1].get("content"), "Test query")
# TODO: Add tests for other config variables
@patch("openai.ChatCompletion.create")
def test_app_passing(self, mock_create):
mock_create.return_value = {"choices": [{"message": {"content": "response"}}]} # Mock response
self.assertEqual(app.llm.config.system_prompt, "Test system prompt")
self.assertEqual(answer, "Test answer")
@patch("embedchain.llm.openai.OpenAILlm._get_answer")
def test_app_passing(self, mock_get_answer):
mock_get_answer.return_value = MagicMock()
mock_get_answer.return_value.content = "Test answer"
config = AppConfig(collect_metrics=False)
chat_config = BaseLlmConfig()
app = App(config=config, llm_config=chat_config, system_prompt="Test system prompt")
answer = app.llm.get_llm_model_answer("Test query")
self.assertEqual(app.llm.config.system_prompt, "Test system prompt")
app.llm.get_llm_model_answer("Test query")
# Test system_prompt: Check that the 'create' method was called with the correct 'messages' argument
messages_arg = mock_create.call_args.kwargs["messages"]
self.assertTrue(messages_arg[0].get("role"), "system")
self.assertEqual(messages_arg[0].get("content"), "Test system prompt")
self.assertEqual(answer, "Test answer")
@patch("chromadb.api.models.Collection.Collection.add", MagicMock)
def test_query_with_where_in_params(self):