fix: use openai llm via langchain (#670)
Co-authored-by: Deshraj Yadav <deshrajdry@gmail.com>
This commit is contained in:
@@ -21,7 +21,8 @@ from embedchain.embedder.base import BaseEmbedder
|
||||
from embedchain.helper.json_serializable import JSONSerializable
|
||||
from embedchain.llm.base import BaseLlm
|
||||
from embedchain.loaders.base_loader import BaseLoader
|
||||
from embedchain.models.data_type import DataType, DirectDataType, IndirectDataType, SpecialDataType
|
||||
from embedchain.models.data_type import (DataType, DirectDataType,
|
||||
IndirectDataType, SpecialDataType)
|
||||
from embedchain.utils import detect_datatype
|
||||
from embedchain.vectordb.base import BaseVectorDB
|
||||
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
from typing import Optional
|
||||
|
||||
import openai
|
||||
from langchain.chat_models import ChatOpenAI
|
||||
from langchain.schema import HumanMessage, SystemMessage
|
||||
|
||||
from embedchain.config import BaseLlmConfig
|
||||
from embedchain.helper.json_serializable import register_deserializable
|
||||
@@ -12,31 +13,32 @@ class OpenAILlm(BaseLlm):
|
||||
def __init__(self, config: Optional[BaseLlmConfig] = None):
|
||||
super().__init__(config=config)
|
||||
|
||||
# NOTE: This class does not use langchain. One reason is that `top_p` is not supported.
|
||||
|
||||
def get_llm_model_answer(self, prompt):
|
||||
messages = []
|
||||
if self.config.system_prompt:
|
||||
messages.append({"role": "system", "content": self.config.system_prompt})
|
||||
messages.append({"role": "user", "content": prompt})
|
||||
response = openai.ChatCompletion.create(
|
||||
model=self.config.model or "gpt-3.5-turbo-0613",
|
||||
messages=messages,
|
||||
temperature=self.config.temperature,
|
||||
max_tokens=self.config.max_tokens,
|
||||
top_p=self.config.top_p,
|
||||
stream=self.config.stream,
|
||||
)
|
||||
response = OpenAILlm._get_answer(prompt, self.config)
|
||||
|
||||
if self.config.stream:
|
||||
return self._stream_llm_model_response(response)
|
||||
return response
|
||||
else:
|
||||
return response["choices"][0]["message"]["content"]
|
||||
return response.content
|
||||
|
||||
def _stream_llm_model_response(self, response):
|
||||
"""
|
||||
This is a generator for streaming response from the OpenAI completions API
|
||||
"""
|
||||
for line in response:
|
||||
chunk = line["choices"][0].get("delta", {}).get("content", "")
|
||||
yield chunk
|
||||
def _get_answer(prompt: str, config: BaseLlmConfig) -> str:
|
||||
messages = []
|
||||
if config.system_prompt:
|
||||
messages.append(SystemMessage(content=config.system_prompt))
|
||||
messages.append(HumanMessage(content=prompt))
|
||||
kwargs = {
|
||||
"model": config.model or "gpt-3.5-turbo-0613",
|
||||
"temperature": config.temperature,
|
||||
"max_tokens": config.max_tokens,
|
||||
"model_kwargs": {},
|
||||
}
|
||||
if config.top_p:
|
||||
kwargs["model_kwargs"]["top_p"] = config.top_p
|
||||
if config.stream:
|
||||
from langchain.callbacks.streaming_stdout import \
|
||||
StreamingStdOutCallbackHandler
|
||||
|
||||
chat = ChatOpenAI(**kwargs, streaming=config.stream, callbacks=[StreamingStdOutCallbackHandler()])
|
||||
else:
|
||||
chat = ChatOpenAI(**kwargs)
|
||||
return chat(messages)
|
||||
|
||||
Reference in New Issue
Block a user