Add Hugging Face Hub LLM support (#762)
This commit is contained in:
51
embedchain/llm/hugging_face_hub.py
Normal file
51
embedchain/llm/hugging_face_hub.py
Normal file
@@ -0,0 +1,51 @@
|
||||
import importlib
|
||||
import os
|
||||
from typing import Optional
|
||||
|
||||
from langchain.llms import HuggingFaceHub
|
||||
|
||||
from embedchain.config import BaseLlmConfig
|
||||
from embedchain.helper.json_serializable import register_deserializable
|
||||
from embedchain.llm.base import BaseLlm
|
||||
|
||||
|
||||
@register_deserializable
|
||||
class HuggingFaceHubLlm(BaseLlm):
|
||||
def __init__(self, config: Optional[BaseLlmConfig] = None):
|
||||
if "HUGGINGFACEHUB_ACCESS_TOKEN" not in os.environ:
|
||||
raise ValueError("Please set the HUGGINGFACEHUB_ACCESS_TOKEN environment variable.")
|
||||
|
||||
try:
|
||||
importlib.import_module("huggingface_hub")
|
||||
except ModuleNotFoundError:
|
||||
raise ModuleNotFoundError(
|
||||
"The required dependencies for HuggingFaceHub are not installed."
|
||||
'Please install with `pip install --upgrade "embedchain[huggingface_hub]"`'
|
||||
) from None
|
||||
|
||||
super().__init__(config=config)
|
||||
|
||||
def get_llm_model_answer(self, prompt):
|
||||
if self.config.system_prompt:
|
||||
raise ValueError("HuggingFaceHubLlm does not support `system_prompt`")
|
||||
return HuggingFaceHubLlm._get_answer(prompt=prompt, config=self.config)
|
||||
|
||||
@staticmethod
|
||||
def _get_answer(prompt: str, config: BaseLlmConfig) -> str:
|
||||
model_kwargs = {
|
||||
"temperature": config.temperature or 0.1,
|
||||
"max_new_tokens": config.max_tokens,
|
||||
}
|
||||
|
||||
if config.top_p > 0.0 and config.top_p < 1.0:
|
||||
model_kwargs["top_p"] = config.top_p
|
||||
else:
|
||||
raise ValueError("`top_p` must be > 0.0 and < 1.0")
|
||||
|
||||
llm = HuggingFaceHub(
|
||||
huggingfacehub_api_token=os.environ["HUGGINGFACEHUB_ACCESS_TOKEN"],
|
||||
repo_id=config.model or "google/flan-t5-xxl",
|
||||
model_kwargs=model_kwargs,
|
||||
)
|
||||
|
||||
return llm(prompt)
|
||||
@@ -112,6 +112,7 @@ pillow = { version = "10.0.1", optional = true }
|
||||
torchvision = { version = ">=0.15.1, !=0.15.2", optional = true }
|
||||
ftfy = { version = "6.1.1", optional = true }
|
||||
regex = { version = "2023.8.8", optional = true }
|
||||
huggingface_hub = { version = "^0.17.3", optional = true }
|
||||
|
||||
[tool.poetry.group.dev.dependencies]
|
||||
black = "^23.3.0"
|
||||
@@ -136,6 +137,7 @@ discord = ["discord"]
|
||||
slack = ["slack-sdk", "flask"]
|
||||
whatsapp = ["twilio", "flask"]
|
||||
images = ["torch", "ftfy", "regex", "pillow", "torchvision"]
|
||||
huggingface_hub=["huggingface_hub"]
|
||||
cohere = ["cohere"]
|
||||
|
||||
[tool.poetry.group.docs.dependencies]
|
||||
|
||||
64
tests/llm/test_hugging_face_hub.py
Normal file
64
tests/llm/test_hugging_face_hub.py
Normal file
@@ -0,0 +1,64 @@
|
||||
import importlib
|
||||
import os
|
||||
import unittest
|
||||
from unittest.mock import patch, MagicMock
|
||||
|
||||
from embedchain.config import BaseLlmConfig
|
||||
from embedchain.llm.hugging_face_hub import HuggingFaceHubLlm
|
||||
|
||||
|
||||
class TestHuggingFaceHubLlm(unittest.TestCase):
|
||||
def setUp(self):
|
||||
os.environ["HUGGINGFACEHUB_ACCESS_TOKEN"] = "test_access_token"
|
||||
self.config = BaseLlmConfig(model="google/flan-t5-xxl", max_tokens=50, temperature=0.7, top_p=0.8)
|
||||
|
||||
def test_init_raises_value_error_without_api_key(self):
|
||||
os.environ.pop("HUGGINGFACEHUB_ACCESS_TOKEN")
|
||||
with self.assertRaises(ValueError):
|
||||
HuggingFaceHubLlm()
|
||||
|
||||
def test_get_llm_model_answer_raises_value_error_for_system_prompt(self):
|
||||
llm = HuggingFaceHubLlm(self.config)
|
||||
llm.config.system_prompt = "system_prompt"
|
||||
with self.assertRaises(ValueError):
|
||||
llm.get_llm_model_answer("prompt")
|
||||
|
||||
def test_top_p_value_within_range(self):
|
||||
config = BaseLlmConfig(top_p=1.0)
|
||||
with self.assertRaises(ValueError):
|
||||
HuggingFaceHubLlm._get_answer("test_prompt", config)
|
||||
|
||||
def test_dependency_is_imported(self):
|
||||
importlib_installed = True
|
||||
try:
|
||||
importlib.import_module("huggingface_hub")
|
||||
except ImportError:
|
||||
importlib_installed = False
|
||||
self.assertTrue(importlib_installed)
|
||||
|
||||
@patch("embedchain.llm.hugging_face_hub.HuggingFaceHubLlm._get_answer")
|
||||
def test_get_llm_model_answer(self, mock_get_answer):
|
||||
mock_get_answer.return_value = "Test answer"
|
||||
|
||||
llm = HuggingFaceHubLlm(self.config)
|
||||
answer = llm.get_llm_model_answer("Test query")
|
||||
|
||||
self.assertEqual(answer, "Test answer")
|
||||
mock_get_answer.assert_called_once()
|
||||
|
||||
@patch("embedchain.llm.hugging_face_hub.HuggingFaceHub")
|
||||
def test_hugging_face_mock(self, mock_hugging_face_hub):
|
||||
mock_llm_instance = MagicMock()
|
||||
mock_llm_instance.return_value = "Test answer"
|
||||
mock_hugging_face_hub.return_value = mock_llm_instance
|
||||
|
||||
llm = HuggingFaceHubLlm(self.config)
|
||||
answer = llm.get_llm_model_answer("Test query")
|
||||
|
||||
self.assertEqual(answer, "Test answer")
|
||||
mock_hugging_face_hub.assert_called_once_with(
|
||||
huggingfacehub_api_token="test_access_token",
|
||||
repo_id="google/flan-t5-xxl",
|
||||
model_kwargs={"temperature": 0.7, "max_new_tokens": 50, "top_p": 0.8},
|
||||
)
|
||||
mock_llm_instance.assert_called_once_with("Test query")
|
||||
Reference in New Issue
Block a user