Add Hugging Face Hub LLM support (#762)

This commit is contained in:
Sidharth Mohanty
2023-10-10 00:45:22 +05:30
committed by GitHub
parent e226a89637
commit 0cb78b9067
3 changed files with 117 additions and 0 deletions

View File

@@ -0,0 +1,51 @@
import importlib
import os
from typing import Optional
from langchain.llms import HuggingFaceHub
from embedchain.config import BaseLlmConfig
from embedchain.helper.json_serializable import register_deserializable
from embedchain.llm.base import BaseLlm
@register_deserializable
class HuggingFaceHubLlm(BaseLlm):
def __init__(self, config: Optional[BaseLlmConfig] = None):
if "HUGGINGFACEHUB_ACCESS_TOKEN" not in os.environ:
raise ValueError("Please set the HUGGINGFACEHUB_ACCESS_TOKEN environment variable.")
try:
importlib.import_module("huggingface_hub")
except ModuleNotFoundError:
raise ModuleNotFoundError(
"The required dependencies for HuggingFaceHub are not installed."
'Please install with `pip install --upgrade "embedchain[huggingface_hub]"`'
) from None
super().__init__(config=config)
def get_llm_model_answer(self, prompt):
if self.config.system_prompt:
raise ValueError("HuggingFaceHubLlm does not support `system_prompt`")
return HuggingFaceHubLlm._get_answer(prompt=prompt, config=self.config)
@staticmethod
def _get_answer(prompt: str, config: BaseLlmConfig) -> str:
model_kwargs = {
"temperature": config.temperature or 0.1,
"max_new_tokens": config.max_tokens,
}
if config.top_p > 0.0 and config.top_p < 1.0:
model_kwargs["top_p"] = config.top_p
else:
raise ValueError("`top_p` must be > 0.0 and < 1.0")
llm = HuggingFaceHub(
huggingfacehub_api_token=os.environ["HUGGINGFACEHUB_ACCESS_TOKEN"],
repo_id=config.model or "google/flan-t5-xxl",
model_kwargs=model_kwargs,
)
return llm(prompt)

View File

@@ -112,6 +112,7 @@ pillow = { version = "10.0.1", optional = true }
torchvision = { version = ">=0.15.1, !=0.15.2", optional = true }
ftfy = { version = "6.1.1", optional = true }
regex = { version = "2023.8.8", optional = true }
huggingface_hub = { version = "^0.17.3", optional = true }
[tool.poetry.group.dev.dependencies]
black = "^23.3.0"
@@ -136,6 +137,7 @@ discord = ["discord"]
slack = ["slack-sdk", "flask"]
whatsapp = ["twilio", "flask"]
images = ["torch", "ftfy", "regex", "pillow", "torchvision"]
huggingface_hub=["huggingface_hub"]
cohere = ["cohere"]
[tool.poetry.group.docs.dependencies]

View File

@@ -0,0 +1,64 @@
import importlib
import os
import unittest
from unittest.mock import patch, MagicMock
from embedchain.config import BaseLlmConfig
from embedchain.llm.hugging_face_hub import HuggingFaceHubLlm
class TestHuggingFaceHubLlm(unittest.TestCase):
def setUp(self):
os.environ["HUGGINGFACEHUB_ACCESS_TOKEN"] = "test_access_token"
self.config = BaseLlmConfig(model="google/flan-t5-xxl", max_tokens=50, temperature=0.7, top_p=0.8)
def test_init_raises_value_error_without_api_key(self):
os.environ.pop("HUGGINGFACEHUB_ACCESS_TOKEN")
with self.assertRaises(ValueError):
HuggingFaceHubLlm()
def test_get_llm_model_answer_raises_value_error_for_system_prompt(self):
llm = HuggingFaceHubLlm(self.config)
llm.config.system_prompt = "system_prompt"
with self.assertRaises(ValueError):
llm.get_llm_model_answer("prompt")
def test_top_p_value_within_range(self):
config = BaseLlmConfig(top_p=1.0)
with self.assertRaises(ValueError):
HuggingFaceHubLlm._get_answer("test_prompt", config)
def test_dependency_is_imported(self):
importlib_installed = True
try:
importlib.import_module("huggingface_hub")
except ImportError:
importlib_installed = False
self.assertTrue(importlib_installed)
@patch("embedchain.llm.hugging_face_hub.HuggingFaceHubLlm._get_answer")
def test_get_llm_model_answer(self, mock_get_answer):
mock_get_answer.return_value = "Test answer"
llm = HuggingFaceHubLlm(self.config)
answer = llm.get_llm_model_answer("Test query")
self.assertEqual(answer, "Test answer")
mock_get_answer.assert_called_once()
@patch("embedchain.llm.hugging_face_hub.HuggingFaceHub")
def test_hugging_face_mock(self, mock_hugging_face_hub):
mock_llm_instance = MagicMock()
mock_llm_instance.return_value = "Test answer"
mock_hugging_face_hub.return_value = mock_llm_instance
llm = HuggingFaceHubLlm(self.config)
answer = llm.get_llm_model_answer("Test query")
self.assertEqual(answer, "Test answer")
mock_hugging_face_hub.assert_called_once_with(
huggingfacehub_api_token="test_access_token",
repo_id="google/flan-t5-xxl",
model_kwargs={"temperature": 0.7, "max_new_tokens": 50, "top_p": 0.8},
)
mock_llm_instance.assert_called_once_with("Test query")