33
docs/components/llms/models/gemini.mdx
Normal file
33
docs/components/llms/models/gemini.mdx
Normal file
@@ -0,0 +1,33 @@
|
||||
---
|
||||
title: Gemini
|
||||
---
|
||||
|
||||
To use Gemini model, you have to set the `GEMINI_API_KEY` environment variable. You can obtain the Gemini API key from the [Google AI Studio](https://aistudio.google.com/app/apikey)
|
||||
|
||||
## Usage
|
||||
|
||||
```python
|
||||
import os
|
||||
from mem0 import Memory
|
||||
|
||||
os.environ["OPENAI_API_KEY"] = "your-api-key" # used for embedding model
|
||||
os.environ["GEMINI_API_KEY"] = "your-api-key"
|
||||
|
||||
config = {
|
||||
"llm": {
|
||||
"provider": "gemini",
|
||||
"config": {
|
||||
"model": "gemini-1.5-flash-latest",
|
||||
"temperature": 0.2,
|
||||
"max_tokens": 1500,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
m = Memory.from_config(config)
|
||||
m.add("Likes to play cricket on weekends", user_id="alice", metadata={"category": "hobbies"})
|
||||
```
|
||||
|
||||
## Config
|
||||
|
||||
All available parameters for the `Gemini` config are present in [Master List of All Params in Config](../config).
|
||||
@@ -23,6 +23,7 @@ To view all supported llms, visit the [Supported LLMs](./models).
|
||||
<Card title="Mistral AI" href="/components/llms/models/mistral_ai"></Card>
|
||||
<Card title="Google AI" href="/components/llms/models/google_ai"></Card>
|
||||
<Card title="AWS bedrock" href="/components/llms/models/aws_bedrock"></Card>
|
||||
<Card title="Gemini" href="/components/llms/models/gemini"></Card>
|
||||
</CardGroup>
|
||||
|
||||
## Structured vs Unstructured Outputs
|
||||
|
||||
@@ -93,7 +93,8 @@
|
||||
"components/llms/models/litellm",
|
||||
"components/llms/models/mistral_AI",
|
||||
"components/llms/models/google_AI",
|
||||
"components/llms/models/aws_bedrock"
|
||||
"components/llms/models/aws_bedrock",
|
||||
"components/llms/models/gemini"
|
||||
]
|
||||
}
|
||||
]
|
||||
|
||||
154
mem0/llms/gemini.py
Normal file
154
mem0/llms/gemini.py
Normal file
@@ -0,0 +1,154 @@
|
||||
import os
|
||||
from typing import Dict, List, Optional
|
||||
|
||||
try:
|
||||
import google.generativeai as genai
|
||||
from google.generativeai import GenerativeModel
|
||||
from google.generativeai.types import content_types
|
||||
except ImportError:
|
||||
raise ImportError("The 'google-generativeai' library is required. Please install it using 'pip install google-generativeai'.")
|
||||
|
||||
from mem0.configs.llms.base import BaseLlmConfig
|
||||
from mem0.llms.base import LLMBase
|
||||
|
||||
|
||||
class GeminiLLM(LLMBase):
|
||||
def __init__(self, config: Optional[BaseLlmConfig] = None):
|
||||
super().__init__(config)
|
||||
|
||||
if not self.config.model:
|
||||
self.config.model = "gemini-1.5-flash-latest"
|
||||
|
||||
api_key = self.config.api_key or os.getenv("GEMINI_API_KEY")
|
||||
genai.configure(api_key=api_key)
|
||||
self.client = GenerativeModel(model_name=self.config.model)
|
||||
|
||||
def _parse_response(self, response, tools):
|
||||
"""
|
||||
Process the response based on whether tools are used or not.
|
||||
|
||||
Args:
|
||||
response: The raw response from API.
|
||||
tools: The list of tools provided in the request.
|
||||
|
||||
Returns:
|
||||
str or dict: The processed response.
|
||||
"""
|
||||
if tools:
|
||||
processed_response = {
|
||||
"content": content if (content := response.candidates[0].content.parts[0].text) else None,
|
||||
"tool_calls": [],
|
||||
}
|
||||
|
||||
for part in response.candidates[0].content.parts:
|
||||
if fn := part.function_call:
|
||||
processed_response["tool_calls"].append(
|
||||
{
|
||||
"name": fn.name,
|
||||
"arguments": {key:val for key, val in fn.args.items()},
|
||||
}
|
||||
)
|
||||
|
||||
return processed_response
|
||||
else:
|
||||
return response.candidates[0].content.parts[0].text
|
||||
|
||||
def _reformat_messages(self, messages : List[Dict[str, str]]):
|
||||
"""
|
||||
Reformat messages for Gemini.
|
||||
|
||||
Args:
|
||||
messages: The list of messages provided in the request.
|
||||
|
||||
Returns:
|
||||
list: The list of messages in the required format.
|
||||
"""
|
||||
new_messages = []
|
||||
|
||||
for message in messages:
|
||||
if message["role"] == "system":
|
||||
content = "THIS IS A SYSTEM PROMPT. YOU MUST OBEY THIS: " + message["content"]
|
||||
|
||||
else:
|
||||
content = message["content"]
|
||||
|
||||
new_messages.append({"parts": content,
|
||||
"role": "model" if message["role"] == "model" else "user"})
|
||||
|
||||
return new_messages
|
||||
|
||||
def _reformat_tools(self, tools: Optional[List[Dict]]):
|
||||
"""
|
||||
Reformat tools for Gemini.
|
||||
|
||||
Args:
|
||||
tools: The list of tools provided in the request.
|
||||
|
||||
Returns:
|
||||
list: The list of tools in the required format.
|
||||
"""
|
||||
|
||||
def remove_additional_properties(data):
|
||||
"""Recursively removes 'additionalProperties' from nested dictionaries."""
|
||||
|
||||
if isinstance(data, dict):
|
||||
filtered_dict = {
|
||||
key: remove_additional_properties(value)
|
||||
for key, value in data.items()
|
||||
if not (key == "additionalProperties")
|
||||
}
|
||||
return filtered_dict
|
||||
else:
|
||||
return data
|
||||
|
||||
new_tools = []
|
||||
if tools:
|
||||
for tool in tools:
|
||||
func = tool['function'].copy()
|
||||
new_tools.append({"function_declarations":[remove_additional_properties(func)]})
|
||||
|
||||
return new_tools
|
||||
else:
|
||||
return None
|
||||
|
||||
def generate_response(
|
||||
self,
|
||||
messages: List[Dict[str, str]],
|
||||
response_format=None,
|
||||
tools: Optional[List[Dict]] = None,
|
||||
tool_choice: str = "auto",
|
||||
):
|
||||
"""
|
||||
Generate a response based on the given messages using Gemini.
|
||||
|
||||
Args:
|
||||
messages (list): List of message dicts containing 'role' and 'content'.
|
||||
response_format (str or object, optional): Format for the response. Defaults to "text".
|
||||
tools (list, optional): List of tools that the model can call. Defaults to None.
|
||||
tool_choice (str, optional): Tool choice method. Defaults to "auto".
|
||||
|
||||
Returns:
|
||||
str: The generated response.
|
||||
"""
|
||||
|
||||
params = {
|
||||
"temperature": self.config.temperature,
|
||||
"max_output_tokens": self.config.max_tokens,
|
||||
"top_p": self.config.top_p,
|
||||
}
|
||||
|
||||
if response_format:
|
||||
params["response_mime_type"] = "application/json"
|
||||
params["response_schema"] = list[response_format]
|
||||
if tool_choice:
|
||||
tool_config = content_types.to_tool_config(
|
||||
{"function_calling_config":
|
||||
{"mode": tool_choice, "allowed_function_names": [tool['function']['name'] for tool in tools] if tool_choice == "any" else None}
|
||||
})
|
||||
|
||||
response = self.client.generate_content(contents = self._reformat_messages(messages),
|
||||
tools = self._reformat_tools(tools),
|
||||
generation_config = genai.GenerationConfig(**params),
|
||||
tool_config = tool_config)
|
||||
|
||||
return self._parse_response(response, tools)
|
||||
@@ -22,6 +22,7 @@ class LlmFactory:
|
||||
"openai_structured": "mem0.llms.openai_structured.OpenAIStructuredLLM",
|
||||
"anthropic": "mem0.llms.anthropic.AnthropicLLM",
|
||||
"azure_openai_structured": "mem0.llms.azure_openai_structured.AzureOpenAIStructuredLLM",
|
||||
"gemini": "mem0.llms.gemini.GeminiLLM",
|
||||
}
|
||||
|
||||
@classmethod
|
||||
|
||||
118
tests/llms/test_gemini_llm.py
Normal file
118
tests/llms/test_gemini_llm.py
Normal file
@@ -0,0 +1,118 @@
|
||||
from unittest.mock import Mock, patch
|
||||
|
||||
import pytest
|
||||
from google.generativeai import GenerationConfig
|
||||
from google.generativeai.types import content_types
|
||||
|
||||
from mem0.configs.llms.base import BaseLlmConfig
|
||||
from mem0.llms.gemini import GeminiLLM
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def mock_gemini_client():
|
||||
with patch("mem0.llms.gemini.GenerativeModel") as mock_gemini:
|
||||
mock_client = Mock()
|
||||
mock_gemini.return_value = mock_client
|
||||
yield mock_client
|
||||
|
||||
|
||||
def test_generate_response_without_tools(mock_gemini_client: Mock):
|
||||
config = BaseLlmConfig(model="gemini-1.5-flash-latest", temperature=0.7, max_tokens=100, top_p=1.0)
|
||||
llm = GeminiLLM(config)
|
||||
messages = [
|
||||
{"role": "system", "content": "You are a helpful assistant."},
|
||||
{"role": "user", "content": "Hello, how are you?"},
|
||||
]
|
||||
|
||||
mock_part = Mock(text="I'm doing well, thank you for asking!")
|
||||
mock_content = Mock(parts=[mock_part])
|
||||
mock_message = Mock(content=mock_content)
|
||||
mock_response = Mock(candidates=[mock_message])
|
||||
mock_gemini_client.generate_content.return_value = mock_response
|
||||
|
||||
response = llm.generate_response(messages)
|
||||
|
||||
mock_gemini_client.generate_content.assert_called_once_with(
|
||||
contents = [
|
||||
{"parts": "THIS IS A SYSTEM PROMPT. YOU MUST OBEY THIS: You are a helpful assistant.", "role": "user"},
|
||||
{"parts": "Hello, how are you?", "role": "user"}
|
||||
],
|
||||
generation_config = GenerationConfig(temperature=0.7, max_output_tokens=100, top_p=1.0),
|
||||
tools = None,
|
||||
tool_config = content_types.to_tool_config(
|
||||
{"function_calling_config":
|
||||
{"mode": 'auto', "allowed_function_names": None}
|
||||
})
|
||||
)
|
||||
assert response == "I'm doing well, thank you for asking!"
|
||||
|
||||
def test_generate_response_with_tools(mock_gemini_client: Mock):
|
||||
config = BaseLlmConfig(model="gemini-1.5-flash-latest", temperature=0.7, max_tokens=100, top_p=1.0)
|
||||
llm = GeminiLLM(config)
|
||||
messages = [
|
||||
{"role": "system", "content": "You are a helpful assistant."},
|
||||
{"role": "user", "content": "Add a new memory: Today is a sunny day."},
|
||||
]
|
||||
tools = [
|
||||
{
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": "add_memory",
|
||||
"description": "Add a memory",
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"properties": {"data": {"type": "string", "description": "Data to add to memory"}},
|
||||
"required": ["data"],
|
||||
},
|
||||
},
|
||||
}
|
||||
]
|
||||
|
||||
mock_tool_call = Mock()
|
||||
mock_tool_call.name = "add_memory"
|
||||
mock_tool_call.args = {"data": "Today is a sunny day."}
|
||||
|
||||
mock_part = Mock()
|
||||
mock_part.function_call = mock_tool_call
|
||||
mock_part.text="I've added the memory for you."
|
||||
|
||||
mock_content = Mock()
|
||||
mock_content.parts=[mock_part]
|
||||
|
||||
mock_message = Mock()
|
||||
mock_message.content=mock_content
|
||||
|
||||
mock_response = Mock(candidates=[mock_message])
|
||||
mock_gemini_client.generate_content.return_value = mock_response
|
||||
|
||||
response = llm.generate_response(messages, tools=tools)
|
||||
|
||||
mock_gemini_client.generate_content.assert_called_once_with(
|
||||
contents = [
|
||||
{"parts": "THIS IS A SYSTEM PROMPT. YOU MUST OBEY THIS: You are a helpful assistant.", "role": "user"},
|
||||
{"parts": "Add a new memory: Today is a sunny day.", "role": "user"}
|
||||
],
|
||||
generation_config = GenerationConfig(temperature=0.7, max_output_tokens=100, top_p=1.0),
|
||||
tools = [
|
||||
{
|
||||
"function_declarations": [{
|
||||
"name": "add_memory",
|
||||
"description": "Add a memory",
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"properties": {"data": {"type": "string", "description": "Data to add to memory"}},
|
||||
"required": ["data"]
|
||||
}
|
||||
}]
|
||||
}
|
||||
],
|
||||
tool_config = content_types.to_tool_config(
|
||||
{"function_calling_config":
|
||||
{"mode": 'auto', "allowed_function_names": None}
|
||||
})
|
||||
)
|
||||
|
||||
assert response["content"] == "I've added the memory for you."
|
||||
assert len(response["tool_calls"]) == 1
|
||||
assert response["tool_calls"][0]["name"] == "add_memory"
|
||||
assert response["tool_calls"][0]["arguments"] == {"data": "Today is a sunny day."}
|
||||
Reference in New Issue
Block a user