diff --git a/docs/components/llms/models/gemini.mdx b/docs/components/llms/models/gemini.mdx new file mode 100644 index 00000000..f020a2dd --- /dev/null +++ b/docs/components/llms/models/gemini.mdx @@ -0,0 +1,33 @@ +--- +title: Gemini +--- + +To use Gemini model, you have to set the `GEMINI_API_KEY` environment variable. You can obtain the Gemini API key from the [Google AI Studio](https://aistudio.google.com/app/apikey) + +## Usage + +```python +import os +from mem0 import Memory + +os.environ["OPENAI_API_KEY"] = "your-api-key" # used for embedding model +os.environ["GEMINI_API_KEY"] = "your-api-key" + +config = { + "llm": { + "provider": "gemini", + "config": { + "model": "gemini-1.5-flash-latest", + "temperature": 0.2, + "max_tokens": 1500, + } + } +} + +m = Memory.from_config(config) +m.add("Likes to play cricket on weekends", user_id="alice", metadata={"category": "hobbies"}) +``` + +## Config + +All available parameters for the `Gemini` config are present in [Master List of All Params in Config](../config). \ No newline at end of file diff --git a/docs/components/llms/overview.mdx b/docs/components/llms/overview.mdx index d0fce6a2..d4a3c415 100644 --- a/docs/components/llms/overview.mdx +++ b/docs/components/llms/overview.mdx @@ -23,6 +23,7 @@ To view all supported llms, visit the [Supported LLMs](./models). + ## Structured vs Unstructured Outputs diff --git a/docs/mint.json b/docs/mint.json index 97c6625b..7e5e8f57 100644 --- a/docs/mint.json +++ b/docs/mint.json @@ -93,7 +93,8 @@ "components/llms/models/litellm", "components/llms/models/mistral_AI", "components/llms/models/google_AI", - "components/llms/models/aws_bedrock" + "components/llms/models/aws_bedrock", + "components/llms/models/gemini" ] } ] diff --git a/mem0/llms/gemini.py b/mem0/llms/gemini.py new file mode 100644 index 00000000..a475226c --- /dev/null +++ b/mem0/llms/gemini.py @@ -0,0 +1,154 @@ +import os +from typing import Dict, List, Optional + +try: + import google.generativeai as genai + from google.generativeai import GenerativeModel + from google.generativeai.types import content_types +except ImportError: + raise ImportError("The 'google-generativeai' library is required. Please install it using 'pip install google-generativeai'.") + +from mem0.configs.llms.base import BaseLlmConfig +from mem0.llms.base import LLMBase + + +class GeminiLLM(LLMBase): + def __init__(self, config: Optional[BaseLlmConfig] = None): + super().__init__(config) + + if not self.config.model: + self.config.model = "gemini-1.5-flash-latest" + + api_key = self.config.api_key or os.getenv("GEMINI_API_KEY") + genai.configure(api_key=api_key) + self.client = GenerativeModel(model_name=self.config.model) + + def _parse_response(self, response, tools): + """ + Process the response based on whether tools are used or not. + + Args: + response: The raw response from API. + tools: The list of tools provided in the request. + + Returns: + str or dict: The processed response. + """ + if tools: + processed_response = { + "content": content if (content := response.candidates[0].content.parts[0].text) else None, + "tool_calls": [], + } + + for part in response.candidates[0].content.parts: + if fn := part.function_call: + processed_response["tool_calls"].append( + { + "name": fn.name, + "arguments": {key:val for key, val in fn.args.items()}, + } + ) + + return processed_response + else: + return response.candidates[0].content.parts[0].text + + def _reformat_messages(self, messages : List[Dict[str, str]]): + """ + Reformat messages for Gemini. + + Args: + messages: The list of messages provided in the request. + + Returns: + list: The list of messages in the required format. + """ + new_messages = [] + + for message in messages: + if message["role"] == "system": + content = "THIS IS A SYSTEM PROMPT. YOU MUST OBEY THIS: " + message["content"] + + else: + content = message["content"] + + new_messages.append({"parts": content, + "role": "model" if message["role"] == "model" else "user"}) + + return new_messages + + def _reformat_tools(self, tools: Optional[List[Dict]]): + """ + Reformat tools for Gemini. + + Args: + tools: The list of tools provided in the request. + + Returns: + list: The list of tools in the required format. + """ + + def remove_additional_properties(data): + """Recursively removes 'additionalProperties' from nested dictionaries.""" + + if isinstance(data, dict): + filtered_dict = { + key: remove_additional_properties(value) + for key, value in data.items() + if not (key == "additionalProperties") + } + return filtered_dict + else: + return data + + new_tools = [] + if tools: + for tool in tools: + func = tool['function'].copy() + new_tools.append({"function_declarations":[remove_additional_properties(func)]}) + + return new_tools + else: + return None + + def generate_response( + self, + messages: List[Dict[str, str]], + response_format=None, + tools: Optional[List[Dict]] = None, + tool_choice: str = "auto", + ): + """ + Generate a response based on the given messages using Gemini. + + Args: + messages (list): List of message dicts containing 'role' and 'content'. + response_format (str or object, optional): Format for the response. Defaults to "text". + tools (list, optional): List of tools that the model can call. Defaults to None. + tool_choice (str, optional): Tool choice method. Defaults to "auto". + + Returns: + str: The generated response. + """ + + params = { + "temperature": self.config.temperature, + "max_output_tokens": self.config.max_tokens, + "top_p": self.config.top_p, + } + + if response_format: + params["response_mime_type"] = "application/json" + params["response_schema"] = list[response_format] + if tool_choice: + tool_config = content_types.to_tool_config( + {"function_calling_config": + {"mode": tool_choice, "allowed_function_names": [tool['function']['name'] for tool in tools] if tool_choice == "any" else None} + }) + + response = self.client.generate_content(contents = self._reformat_messages(messages), + tools = self._reformat_tools(tools), + generation_config = genai.GenerationConfig(**params), + tool_config = tool_config) + + return self._parse_response(response, tools) diff --git a/mem0/utils/factory.py b/mem0/utils/factory.py index 43f853c6..b7606c69 100644 --- a/mem0/utils/factory.py +++ b/mem0/utils/factory.py @@ -22,6 +22,7 @@ class LlmFactory: "openai_structured": "mem0.llms.openai_structured.OpenAIStructuredLLM", "anthropic": "mem0.llms.anthropic.AnthropicLLM", "azure_openai_structured": "mem0.llms.azure_openai_structured.AzureOpenAIStructuredLLM", + "gemini": "mem0.llms.gemini.GeminiLLM", } @classmethod diff --git a/tests/llms/test_gemini_llm.py b/tests/llms/test_gemini_llm.py new file mode 100644 index 00000000..c6244aeb --- /dev/null +++ b/tests/llms/test_gemini_llm.py @@ -0,0 +1,118 @@ +from unittest.mock import Mock, patch + +import pytest +from google.generativeai import GenerationConfig +from google.generativeai.types import content_types + +from mem0.configs.llms.base import BaseLlmConfig +from mem0.llms.gemini import GeminiLLM + + +@pytest.fixture +def mock_gemini_client(): + with patch("mem0.llms.gemini.GenerativeModel") as mock_gemini: + mock_client = Mock() + mock_gemini.return_value = mock_client + yield mock_client + + +def test_generate_response_without_tools(mock_gemini_client: Mock): + config = BaseLlmConfig(model="gemini-1.5-flash-latest", temperature=0.7, max_tokens=100, top_p=1.0) + llm = GeminiLLM(config) + messages = [ + {"role": "system", "content": "You are a helpful assistant."}, + {"role": "user", "content": "Hello, how are you?"}, + ] + + mock_part = Mock(text="I'm doing well, thank you for asking!") + mock_content = Mock(parts=[mock_part]) + mock_message = Mock(content=mock_content) + mock_response = Mock(candidates=[mock_message]) + mock_gemini_client.generate_content.return_value = mock_response + + response = llm.generate_response(messages) + + mock_gemini_client.generate_content.assert_called_once_with( + contents = [ + {"parts": "THIS IS A SYSTEM PROMPT. YOU MUST OBEY THIS: You are a helpful assistant.", "role": "user"}, + {"parts": "Hello, how are you?", "role": "user"} + ], + generation_config = GenerationConfig(temperature=0.7, max_output_tokens=100, top_p=1.0), + tools = None, + tool_config = content_types.to_tool_config( + {"function_calling_config": + {"mode": 'auto', "allowed_function_names": None} + }) + ) + assert response == "I'm doing well, thank you for asking!" + +def test_generate_response_with_tools(mock_gemini_client: Mock): + config = BaseLlmConfig(model="gemini-1.5-flash-latest", temperature=0.7, max_tokens=100, top_p=1.0) + llm = GeminiLLM(config) + messages = [ + {"role": "system", "content": "You are a helpful assistant."}, + {"role": "user", "content": "Add a new memory: Today is a sunny day."}, + ] + tools = [ + { + "type": "function", + "function": { + "name": "add_memory", + "description": "Add a memory", + "parameters": { + "type": "object", + "properties": {"data": {"type": "string", "description": "Data to add to memory"}}, + "required": ["data"], + }, + }, + } + ] + + mock_tool_call = Mock() + mock_tool_call.name = "add_memory" + mock_tool_call.args = {"data": "Today is a sunny day."} + + mock_part = Mock() + mock_part.function_call = mock_tool_call + mock_part.text="I've added the memory for you." + + mock_content = Mock() + mock_content.parts=[mock_part] + + mock_message = Mock() + mock_message.content=mock_content + + mock_response = Mock(candidates=[mock_message]) + mock_gemini_client.generate_content.return_value = mock_response + + response = llm.generate_response(messages, tools=tools) + + mock_gemini_client.generate_content.assert_called_once_with( + contents = [ + {"parts": "THIS IS A SYSTEM PROMPT. YOU MUST OBEY THIS: You are a helpful assistant.", "role": "user"}, + {"parts": "Add a new memory: Today is a sunny day.", "role": "user"} + ], + generation_config = GenerationConfig(temperature=0.7, max_output_tokens=100, top_p=1.0), + tools = [ + { + "function_declarations": [{ + "name": "add_memory", + "description": "Add a memory", + "parameters": { + "type": "object", + "properties": {"data": {"type": "string", "description": "Data to add to memory"}}, + "required": ["data"] + } + }] + } + ], + tool_config = content_types.to_tool_config( + {"function_calling_config": + {"mode": 'auto', "allowed_function_names": None} + }) + ) + + assert response["content"] == "I've added the memory for you." + assert len(response["tool_calls"]) == 1 + assert response["tool_calls"][0]["name"] == "add_memory" + assert response["tool_calls"][0]["arguments"] == {"data": "Today is a sunny day."}