154
mem0/llms/gemini.py
Normal file
154
mem0/llms/gemini.py
Normal file
@@ -0,0 +1,154 @@
|
||||
import os
|
||||
from typing import Dict, List, Optional
|
||||
|
||||
try:
|
||||
import google.generativeai as genai
|
||||
from google.generativeai import GenerativeModel
|
||||
from google.generativeai.types import content_types
|
||||
except ImportError:
|
||||
raise ImportError("The 'google-generativeai' library is required. Please install it using 'pip install google-generativeai'.")
|
||||
|
||||
from mem0.configs.llms.base import BaseLlmConfig
|
||||
from mem0.llms.base import LLMBase
|
||||
|
||||
|
||||
class GeminiLLM(LLMBase):
|
||||
def __init__(self, config: Optional[BaseLlmConfig] = None):
|
||||
super().__init__(config)
|
||||
|
||||
if not self.config.model:
|
||||
self.config.model = "gemini-1.5-flash-latest"
|
||||
|
||||
api_key = self.config.api_key or os.getenv("GEMINI_API_KEY")
|
||||
genai.configure(api_key=api_key)
|
||||
self.client = GenerativeModel(model_name=self.config.model)
|
||||
|
||||
def _parse_response(self, response, tools):
|
||||
"""
|
||||
Process the response based on whether tools are used or not.
|
||||
|
||||
Args:
|
||||
response: The raw response from API.
|
||||
tools: The list of tools provided in the request.
|
||||
|
||||
Returns:
|
||||
str or dict: The processed response.
|
||||
"""
|
||||
if tools:
|
||||
processed_response = {
|
||||
"content": content if (content := response.candidates[0].content.parts[0].text) else None,
|
||||
"tool_calls": [],
|
||||
}
|
||||
|
||||
for part in response.candidates[0].content.parts:
|
||||
if fn := part.function_call:
|
||||
processed_response["tool_calls"].append(
|
||||
{
|
||||
"name": fn.name,
|
||||
"arguments": {key:val for key, val in fn.args.items()},
|
||||
}
|
||||
)
|
||||
|
||||
return processed_response
|
||||
else:
|
||||
return response.candidates[0].content.parts[0].text
|
||||
|
||||
def _reformat_messages(self, messages : List[Dict[str, str]]):
|
||||
"""
|
||||
Reformat messages for Gemini.
|
||||
|
||||
Args:
|
||||
messages: The list of messages provided in the request.
|
||||
|
||||
Returns:
|
||||
list: The list of messages in the required format.
|
||||
"""
|
||||
new_messages = []
|
||||
|
||||
for message in messages:
|
||||
if message["role"] == "system":
|
||||
content = "THIS IS A SYSTEM PROMPT. YOU MUST OBEY THIS: " + message["content"]
|
||||
|
||||
else:
|
||||
content = message["content"]
|
||||
|
||||
new_messages.append({"parts": content,
|
||||
"role": "model" if message["role"] == "model" else "user"})
|
||||
|
||||
return new_messages
|
||||
|
||||
def _reformat_tools(self, tools: Optional[List[Dict]]):
|
||||
"""
|
||||
Reformat tools for Gemini.
|
||||
|
||||
Args:
|
||||
tools: The list of tools provided in the request.
|
||||
|
||||
Returns:
|
||||
list: The list of tools in the required format.
|
||||
"""
|
||||
|
||||
def remove_additional_properties(data):
|
||||
"""Recursively removes 'additionalProperties' from nested dictionaries."""
|
||||
|
||||
if isinstance(data, dict):
|
||||
filtered_dict = {
|
||||
key: remove_additional_properties(value)
|
||||
for key, value in data.items()
|
||||
if not (key == "additionalProperties")
|
||||
}
|
||||
return filtered_dict
|
||||
else:
|
||||
return data
|
||||
|
||||
new_tools = []
|
||||
if tools:
|
||||
for tool in tools:
|
||||
func = tool['function'].copy()
|
||||
new_tools.append({"function_declarations":[remove_additional_properties(func)]})
|
||||
|
||||
return new_tools
|
||||
else:
|
||||
return None
|
||||
|
||||
def generate_response(
|
||||
self,
|
||||
messages: List[Dict[str, str]],
|
||||
response_format=None,
|
||||
tools: Optional[List[Dict]] = None,
|
||||
tool_choice: str = "auto",
|
||||
):
|
||||
"""
|
||||
Generate a response based on the given messages using Gemini.
|
||||
|
||||
Args:
|
||||
messages (list): List of message dicts containing 'role' and 'content'.
|
||||
response_format (str or object, optional): Format for the response. Defaults to "text".
|
||||
tools (list, optional): List of tools that the model can call. Defaults to None.
|
||||
tool_choice (str, optional): Tool choice method. Defaults to "auto".
|
||||
|
||||
Returns:
|
||||
str: The generated response.
|
||||
"""
|
||||
|
||||
params = {
|
||||
"temperature": self.config.temperature,
|
||||
"max_output_tokens": self.config.max_tokens,
|
||||
"top_p": self.config.top_p,
|
||||
}
|
||||
|
||||
if response_format:
|
||||
params["response_mime_type"] = "application/json"
|
||||
params["response_schema"] = list[response_format]
|
||||
if tool_choice:
|
||||
tool_config = content_types.to_tool_config(
|
||||
{"function_calling_config":
|
||||
{"mode": tool_choice, "allowed_function_names": [tool['function']['name'] for tool in tools] if tool_choice == "any" else None}
|
||||
})
|
||||
|
||||
response = self.client.generate_content(contents = self._reformat_messages(messages),
|
||||
tools = self._reformat_tools(tools),
|
||||
generation_config = genai.GenerationConfig(**params),
|
||||
tool_config = tool_config)
|
||||
|
||||
return self._parse_response(response, tools)
|
||||
@@ -22,6 +22,7 @@ class LlmFactory:
|
||||
"openai_structured": "mem0.llms.openai_structured.OpenAIStructuredLLM",
|
||||
"anthropic": "mem0.llms.anthropic.AnthropicLLM",
|
||||
"azure_openai_structured": "mem0.llms.azure_openai_structured.AzureOpenAIStructuredLLM",
|
||||
"gemini": "mem0.llms.gemini.GeminiLLM",
|
||||
}
|
||||
|
||||
@classmethod
|
||||
|
||||
Reference in New Issue
Block a user