Fixing the bug when using Huggingface Models (#1877)

Co-authored-by: parshvadaftari <parshva@192.168.1.5>
This commit is contained in:
Parshva Daftari
2024-09-25 20:04:40 +05:30
committed by GitHub
parent 44ee48e924
commit 0491854298
2 changed files with 10 additions and 12 deletions

View File

@@ -28,4 +28,4 @@ class HuggingFaceEmbedding(EmbeddingBase):
Returns:
list: The embedding vector.
"""
return self.model.encode(text)
return self.model.encode(text, convert_to_numpy = True).tolist()

View File

@@ -1,5 +1,6 @@
import pytest
from unittest.mock import Mock, patch
import numpy as np
from mem0.embeddings.huggingface import HuggingFaceEmbedding
from mem0.configs.embeddings.base import BaseEmbedderConfig
@@ -16,11 +17,10 @@ def test_embed_default_model(mock_sentence_transformer):
config = BaseEmbedderConfig()
embedder = HuggingFaceEmbedding(config)
mock_sentence_transformer.encode.return_value = [0.1, 0.2, 0.3]
mock_sentence_transformer.encode.return_value = np.array([0.1, 0.2, 0.3])
result = embedder.embed("Hello world")
mock_sentence_transformer.encode.assert_called_once_with("Hello world")
mock_sentence_transformer.encode.assert_called_once_with("Hello world", convert_to_numpy=True)
assert result == [0.1, 0.2, 0.3]
@@ -28,11 +28,10 @@ def test_embed_custom_model(mock_sentence_transformer):
config = BaseEmbedderConfig(model="paraphrase-MiniLM-L6-v2")
embedder = HuggingFaceEmbedding(config)
mock_sentence_transformer.encode.return_value = [0.4, 0.5, 0.6]
mock_sentence_transformer.encode.return_value = np.array([0.4, 0.5, 0.6])
result = embedder.embed("Custom model test")
mock_sentence_transformer.encode.assert_called_once_with("Custom model test")
mock_sentence_transformer.encode.assert_called_once_with("Custom model test", convert_to_numpy=True)
assert result == [0.4, 0.5, 0.6]
@@ -40,11 +39,10 @@ def test_embed_with_model_kwargs(mock_sentence_transformer):
config = BaseEmbedderConfig(model="all-MiniLM-L6-v2", model_kwargs={"device": "cuda"})
embedder = HuggingFaceEmbedding(config)
mock_sentence_transformer.encode.return_value = [0.7, 0.8, 0.9]
mock_sentence_transformer.encode.return_value = np.array([0.7, 0.8, 0.9])
result = embedder.embed("Test with device")
mock_sentence_transformer.encode.assert_called_once_with("Test with device")
mock_sentence_transformer.encode.assert_called_once_with("Test with device", convert_to_numpy=True)
assert result == [0.7, 0.8, 0.9]
@@ -62,10 +60,10 @@ def test_embed_with_custom_embedding_dims(mock_sentence_transformer):
config = BaseEmbedderConfig(model="all-mpnet-base-v2", embedding_dims=768)
embedder = HuggingFaceEmbedding(config)
mock_sentence_transformer.encode.return_value = [1.0, 1.1, 1.2]
mock_sentence_transformer.encode.return_value = np.array([1.0, 1.1, 1.2])
result = embedder.embed("Custom embedding dims")
mock_sentence_transformer.encode.assert_called_once_with("Custom embedding dims")
mock_sentence_transformer.encode.assert_called_once_with("Custom embedding dims", convert_to_numpy=True)
assert embedder.config.embedding_dims == 768