feat: add support for Elastcisearch as vector data source (#402)
This commit is contained in:
committed by
GitHub
parent
f0abfea55d
commit
0179141b2e
@@ -1,4 +1,8 @@
|
||||
import logging
|
||||
from typing import Any, Dict, List
|
||||
|
||||
from chromadb.errors import InvalidDimensionException
|
||||
from langchain.docstore.document import Document
|
||||
|
||||
try:
|
||||
import chromadb
|
||||
@@ -7,6 +11,7 @@ except RuntimeError:
|
||||
|
||||
use_pysqlite3()
|
||||
import chromadb
|
||||
|
||||
from chromadb.config import Settings
|
||||
|
||||
from embedchain.vectordb.base_vector_db import BaseVectorDB
|
||||
@@ -41,7 +46,73 @@ class ChromaDB(BaseVectorDB):
|
||||
|
||||
def _get_or_create_collection(self, name):
|
||||
"""Get or create the collection."""
|
||||
return self.client.get_or_create_collection(
|
||||
self.collection = self.client.get_or_create_collection(
|
||||
name=name,
|
||||
embedding_function=self.embedding_fn,
|
||||
)
|
||||
return self.collection
|
||||
|
||||
def get(self, ids: List[str], where: Dict[str, any]) -> List[str]:
|
||||
"""
|
||||
Get existing doc ids present in vector database
|
||||
:param ids: list of doc ids to check for existance
|
||||
:param where: Optional. to filter data
|
||||
"""
|
||||
existing_docs = self.collection.get(
|
||||
ids=ids,
|
||||
where=where, # optional filter
|
||||
)
|
||||
|
||||
return set(existing_docs["ids"])
|
||||
|
||||
def add(self, documents: List[str], metadatas: List[object], ids: List[str]) -> Any:
|
||||
"""
|
||||
add data in vector database
|
||||
:param documents: list of texts to add
|
||||
:param metadatas: list of metadata associated with docs
|
||||
:param ids: ids of docs
|
||||
"""
|
||||
self.collection.add(documents=documents, metadatas=metadatas, ids=ids)
|
||||
|
||||
def _format_result(self, results):
|
||||
return [
|
||||
(Document(page_content=result[0], metadata=result[1] or {}), result[2])
|
||||
for result in zip(
|
||||
results["documents"][0],
|
||||
results["metadatas"][0],
|
||||
results["distances"][0],
|
||||
)
|
||||
]
|
||||
|
||||
def query(self, input_query: List[str], n_results: int, where: Dict[str, any]) -> List[str]:
|
||||
"""
|
||||
query contents from vector data base based on vector similarity
|
||||
:param input_query: list of query string
|
||||
:param n_results: no of similar documents to fetch from database
|
||||
:param where: Optional. to filter data
|
||||
:return: The content of the document that matched your query.
|
||||
"""
|
||||
try:
|
||||
result = self.collection.query(
|
||||
query_texts=[
|
||||
input_query,
|
||||
],
|
||||
n_results=n_results,
|
||||
where=where,
|
||||
)
|
||||
except InvalidDimensionException as e:
|
||||
raise InvalidDimensionException(
|
||||
e.message()
|
||||
+ ". This is commonly a side-effect when an embedding function, different from the one used to add the embeddings, is used to retrieve an embedding from the database." # noqa E501
|
||||
) from None
|
||||
|
||||
results_formatted = self._format_result(result)
|
||||
contents = [result[0].page_content for result in results_formatted]
|
||||
return contents
|
||||
|
||||
def count(self) -> int:
|
||||
return self.collection.count()
|
||||
|
||||
def reset(self):
|
||||
# Delete all data from the database
|
||||
self.client.reset()
|
||||
|
||||
Reference in New Issue
Block a user