Files
t66_langmem/README.md
Docker Config Backup 46faa78237 Initial commit: LangMem fact-based AI memory system with docs and MCP integration
- Complete fact-based memory API with mem0-inspired approach
- Individual fact extraction and deduplication
- ADD/UPDATE/DELETE memory actions
- Precision search with 0.86+ similarity scores
- MCP server for Claude Code integration
- Neo4j graph relationships and PostgreSQL vector storage
- Comprehensive documentation with architecture and API docs
- Matrix communication integration
- Production-ready Docker setup with Ollama and Supabase

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-07-17 13:16:19 +02:00

292 lines
5.8 KiB
Markdown

# LangMem - Long-term Memory System for LLM Projects
A comprehensive memory system that integrates with your existing Ollama and Supabase infrastructure to provide long-term memory capabilities for LLM applications.
## Architecture
LangMem uses a hybrid approach combining:
- **Vector Search**: Supabase with pgvector for semantic similarity
- **Graph Relationships**: Neo4j for contextual connections
- **Embeddings**: Ollama with nomic-embed-text model
- **API Layer**: FastAPI with async support
## Features
- 🧠 **Hybrid Memory Retrieval**: Vector + Graph search
- 🔍 **Semantic Search**: Advanced similarity matching
- 👥 **Multi-user Support**: Isolated user memories
- 📊 **Rich Metadata**: Flexible memory attributes
- 🔒 **Secure API**: Bearer token authentication
- 🐳 **Docker Ready**: Containerized deployment
- 🧪 **Comprehensive Tests**: Unit and integration tests
## Quick Start
### Prerequisites
- Docker and Docker Compose
- Ollama running on localhost:11434
- Supabase running on localai network
- Python 3.11+ (for development)
### 1. Clone and Setup
```bash
git clone <repository>
cd langmem-project
```
### 2. Start Development Environment
```bash
./start-dev.sh
```
This will:
- Create required Docker network
- Start Neo4j database
- Build and start the API
- Run health checks
### 3. Test the API
```bash
./test.sh
```
## API Endpoints
### Authentication
All endpoints require Bearer token authentication:
```
Authorization: Bearer langmem_api_key_2025
```
### Core Endpoints
#### Store Memory
```bash
POST /v1/memories/store
Content-Type: application/json
{
"content": "Your memory content here",
"user_id": "user123",
"session_id": "session456",
"metadata": {
"category": "programming",
"importance": "high"
}
}
```
#### Search Memories
```bash
POST /v1/memories/search
Content-Type: application/json
{
"query": "search query",
"user_id": "user123",
"limit": 10,
"threshold": 0.7,
"include_graph": true
}
```
#### Retrieve for Conversation
```bash
POST /v1/memories/retrieve
Content-Type: application/json
{
"messages": [
{"role": "user", "content": "Hello"},
{"role": "assistant", "content": "Hi there!"}
],
"user_id": "user123",
"session_id": "session456"
}
```
## Configuration
### Environment Variables
Copy `.env.example` to `.env` and configure:
```bash
# API Settings
API_KEY=langmem_api_key_2025
# Ollama Configuration
OLLAMA_URL=http://localhost:11434
# Supabase Configuration
SUPABASE_URL=http://localhost:8000
SUPABASE_KEY=your_supabase_key
SUPABASE_DB_URL=postgresql://postgres:password@localhost:5435/postgres
# Neo4j Configuration
NEO4J_URL=bolt://localhost:7687
NEO4J_USER=neo4j
NEO4J_PASSWORD=langmem_neo4j_password
```
## Development
### Project Structure
```
langmem-project/
├── src/
│ └── api/
│ └── main.py # Main API application
├── tests/
│ ├── test_api.py # API unit tests
│ ├── test_integration.py # Integration tests
│ └── conftest.py # Test configuration
├── docker-compose.yml # Docker services
├── Dockerfile # API container
├── requirements.txt # Python dependencies
├── start-dev.sh # Development startup
├── test.sh # Test runner
└── README.md # This file
```
### Running Tests
```bash
# All tests
./test.sh all
# Unit tests only
./test.sh unit
# Integration tests only
./test.sh integration
# Quick tests (no slow tests)
./test.sh quick
# With coverage
./test.sh coverage
```
### Local Development
```bash
# Install dependencies
pip install -r requirements.txt
# Run API directly
python src/api/main.py
# Run tests
pytest tests/ -v
```
## Integration with Existing Infrastructure
### Ollama Integration
- Uses your existing Ollama instance on localhost:11434
- Leverages nomic-embed-text for embeddings
- Supports any Ollama model for embedding generation
### Supabase Integration
- Connects to your existing Supabase instance
- Uses pgvector extension for vector storage
- Leverages existing authentication and database
### Docker Network
- Connects to your existing `localai` network
- Seamlessly integrates with other services
- Maintains network isolation and security
## API Documentation
Once running, visit:
- API Documentation: http://localhost:8765/docs
- Interactive API: http://localhost:8765/redoc
- Health Check: http://localhost:8765/health
## Monitoring
### Health Checks
The API provides comprehensive health monitoring:
```bash
curl http://localhost:8765/health
```
Returns status for:
- Overall API health
- Ollama connectivity
- Supabase connection
- Neo4j database
- PostgreSQL database
### Logs
View service logs:
```bash
# API logs
docker-compose logs -f langmem-api
# Neo4j logs
docker-compose logs -f langmem-neo4j
# All services
docker-compose logs -f
```
## Troubleshooting
### Common Issues
1. **API not starting**: Check if Ollama and Supabase are running
2. **Database connection failed**: Verify database credentials in .env
3. **Tests failing**: Ensure all services are healthy before running tests
4. **Network issues**: Confirm localai network exists and is accessible
### Debug Commands
```bash
# Check service status
docker-compose ps
# Check network
docker network ls | grep localai
# Test Ollama
curl http://localhost:11434/api/tags
# Test Supabase
curl http://localhost:8000/health
# Check logs
docker-compose logs langmem-api
```
## Production Deployment
For production deployment:
1. Update environment variables
2. Use proper secrets management
3. Configure SSL/TLS
4. Set up monitoring and logging
5. Configure backup procedures
## Contributing
1. Fork the repository
2. Create a feature branch
3. Make your changes
4. Add tests
5. Run the test suite
6. Submit a pull request
## License
MIT License - see LICENSE file for details