Files
t66_langmem/tests/populate_test_data.py
Docker Config Backup f0db3e5546 Clean and organize project structure
Major reorganization:
- Created scripts/ directory for all utility scripts
- Created config/ directory for configuration files
- Moved all test files to tests/ directory
- Updated all script paths to work with new structure
- Updated README.md with new project structure diagram

New structure:
├── src/          # Source code (API + MCP)
├── scripts/      # Utility scripts (start-*.sh, docs_server.py, etc.)
├── tests/        # All test files and debug utilities
├── config/       # Configuration files (JSON, Caddy config)
├── docs/         # Documentation website
└── logs/         # Log files

All scripts updated to use relative paths from project root.
Documentation updated with new folder structure.

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-07-17 14:11:08 +02:00

186 lines
6.9 KiB
Python

#!/usr/bin/env python3
"""
Populate LangMem with test data for Supabase web UI viewing
"""
import asyncio
import httpx
import json
from datetime import datetime
# Configuration
API_BASE_URL = "http://localhost:8765"
API_KEY = "langmem_api_key_2025"
# Test memories to store
test_memories = [
{
"content": "Claude Code is an AI-powered CLI tool that helps with software development tasks. It can read files, search codebases, and generate code.",
"user_id": "demo_user",
"session_id": "demo_session_1",
"metadata": {
"category": "tools",
"subcategory": "ai_development",
"importance": "high",
"tags": ["claude", "ai", "cli", "development"]
}
},
{
"content": "FastAPI is a modern, fast web framework for building APIs with Python. It provides automatic API documentation and type hints.",
"user_id": "demo_user",
"session_id": "demo_session_1",
"metadata": {
"category": "frameworks",
"subcategory": "python_web",
"importance": "medium",
"tags": ["fastapi", "python", "web", "api"]
}
},
{
"content": "Docker containers provide lightweight virtualization for applications. They package software with all dependencies for consistent deployment.",
"user_id": "demo_user",
"session_id": "demo_session_2",
"metadata": {
"category": "devops",
"subcategory": "containerization",
"importance": "high",
"tags": ["docker", "containers", "devops", "deployment"]
}
},
{
"content": "PostgreSQL with pgvector extension enables vector similarity search for embeddings. This is useful for semantic search and AI applications.",
"user_id": "demo_user",
"session_id": "demo_session_2",
"metadata": {
"category": "databases",
"subcategory": "vector_search",
"importance": "high",
"tags": ["postgresql", "pgvector", "embeddings", "search"]
}
},
{
"content": "N8N is an open-source workflow automation tool that connects different services and APIs. It provides a visual interface for building workflows.",
"user_id": "demo_user",
"session_id": "demo_session_3",
"metadata": {
"category": "automation",
"subcategory": "workflow_tools",
"importance": "medium",
"tags": ["n8n", "automation", "workflow", "integration"]
}
},
{
"content": "Ollama runs large language models locally on your machine. It supports models like Llama, Mistral, and provides embedding capabilities.",
"user_id": "demo_user",
"session_id": "demo_session_3",
"metadata": {
"category": "ai",
"subcategory": "local_models",
"importance": "high",
"tags": ["ollama", "llm", "local", "embeddings"]
}
},
{
"content": "Supabase is an open-source Firebase alternative that provides database, authentication, and real-time subscriptions with PostgreSQL.",
"user_id": "demo_user",
"session_id": "demo_session_4",
"metadata": {
"category": "backend",
"subcategory": "baas",
"importance": "medium",
"tags": ["supabase", "database", "authentication", "backend"]
}
},
{
"content": "Neo4j is a graph database that stores data as nodes and relationships. It's excellent for modeling complex relationships and network data.",
"user_id": "demo_user",
"session_id": "demo_session_4",
"metadata": {
"category": "databases",
"subcategory": "graph_database",
"importance": "medium",
"tags": ["neo4j", "graph", "relationships", "cypher"]
}
}
]
async def store_test_memories():
"""Store test memories in LangMem API"""
print("🧪 Populating LangMem with test data...")
print("=" * 50)
headers = {"Authorization": f"Bearer {API_KEY}"}
async with httpx.AsyncClient() as client:
stored_memories = []
for i, memory in enumerate(test_memories, 1):
try:
print(f"\n{i}. Storing: {memory['content'][:50]}...")
response = await client.post(
f"{API_BASE_URL}/v1/memories/store",
json=memory,
headers=headers,
timeout=30.0
)
if response.status_code == 200:
data = response.json()
stored_memories.append(data)
print(f" ✅ Stored with ID: {data['id']}")
else:
print(f" ❌ Failed: {response.status_code}")
print(f" Response: {response.text}")
except Exception as e:
print(f" ❌ Error: {e}")
print(f"\n🎉 Successfully stored {len(stored_memories)} memories!")
print("\n📊 Summary:")
print(f" - Total memories: {len(stored_memories)}")
print(f" - User: demo_user")
print(f" - Sessions: {len(set(m['session_id'] for m in test_memories))}")
print(f" - Categories: {len(set(m['metadata']['category'] for m in test_memories))}")
# Test search functionality
print("\n🔍 Testing search functionality...")
search_tests = [
"Python web development",
"AI and machine learning",
"Database and storage",
"Docker containers"
]
for query in search_tests:
try:
response = await client.post(
f"{API_BASE_URL}/v1/memories/search",
json={
"query": query,
"user_id": "demo_user",
"limit": 3,
"threshold": 0.5
},
headers=headers,
timeout=30.0
)
if response.status_code == 200:
data = response.json()
print(f" Query: '{query}' -> {data['total_count']} results")
for memory in data['memories']:
print(f" - {memory['content'][:40]}... ({memory['similarity']:.3f})")
else:
print(f" Query: '{query}' -> Failed ({response.status_code})")
except Exception as e:
print(f" Query: '{query}' -> Error: {e}")
print("\n✅ Test data population complete!")
print(" You can now view the memories in Supabase web UI:")
print(" - Table: langmem_documents")
print(" - URL: http://localhost:8000")
if __name__ == "__main__":
asyncio.run(store_test_memories())