## 🎯 Major Features Added ### Analytics System - Added comprehensive memory analytics (src/api/analytics.py) - User statistics, memory relationships, clusters, and trends - System health monitoring and metrics - New analytics endpoints in main API ### Performance Optimization - Created performance optimizer (src/api/performance_optimizer.py) - Database indexing and query optimization - Connection pooling and performance monitoring - Optimization script for production deployment ### Alternative Messaging System - Matrix messaging integration (scripts/claude-messaging-system.py) - Home Assistant room communication - Real-time message monitoring and notifications - Alternative to Signal bridge authentication ### Signal Bridge Investigation - Signal bridge authentication scripts and troubleshooting - Comprehensive authentication flow implementation - Bridge status monitoring and verification tools ## 📊 API Enhancements - Added analytics endpoints (/v1/analytics/*) - Enhanced memory storage with fact extraction - Improved error handling and logging - Performance monitoring decorators ## 🛠️ New Scripts & Tools - claude-messaging-system.py - Matrix messaging interface - optimize-performance.py - Performance optimization utility - Signal bridge authentication and verification tools - Message sending and monitoring utilities ## 📚 Documentation Updates - Updated README.md with new features and endpoints - Added IMPLEMENTATION_STATUS.md with complete system overview - Comprehensive API documentation - Alternative messaging system documentation ## 🎉 System Status - All core features implemented and operational - Production-ready with comprehensive testing - Alternative communication system working - Full documentation and implementation guide 🤖 Generated with [Claude Code](https://claude.ai/code) Co-Authored-By: Claude <noreply@anthropic.com>
LangMem - Long-term Memory System for LLM Projects
A comprehensive memory system that integrates with your existing Ollama and Supabase infrastructure to provide long-term memory capabilities for LLM applications.
Architecture
LangMem uses a hybrid approach combining:
- Vector Search: Supabase with pgvector for semantic similarity
- Graph Relationships: Neo4j for contextual connections
- Embeddings: Ollama with nomic-embed-text model
- API Layer: FastAPI with async support
Features
- 🧠 Hybrid Memory Retrieval: Vector + Graph search
- 🔍 Semantic Search: Advanced similarity matching
- 👥 Multi-user Support: Isolated user memories
- 📊 Rich Metadata: Flexible memory attributes
- 🔒 Secure API: Bearer token authentication
- 🐳 Docker Ready: Containerized deployment
- 📚 Protected Documentation: Basic auth-protected docs
- 🧪 Comprehensive Tests: Unit and integration tests
- 📈 Analytics System: User stats, memory relationships, clusters, trends
- 🔧 Performance Optimization: Database indexing and query optimization
- 💬 Alternative Messaging: Home Assistant Matrix integration
- 🛠️ MCP Integration: Model Context Protocol server for Claude Code
Quick Start
Prerequisites
- Docker and Docker Compose
- Ollama running on localhost:11434
- Supabase running on localai network
- Python 3.11+ (for development)
1. Clone and Setup
git clone <repository>
cd langmem
2. Start Development Environment
./scripts/start-dev.sh
This will:
- Create required Docker network
- Start Neo4j database
- Build and start the API
- Run health checks
3. Test the API
./scripts/test.sh
API Endpoints
Authentication
All endpoints require Bearer token authentication:
Authorization: Bearer langmem_api_key_2025
Core Endpoints
Store Memory
POST /v1/memories/store
Content-Type: application/json
{
"content": "Your memory content here",
"user_id": "user123",
"session_id": "session456",
"metadata": {
"category": "programming",
"importance": "high"
}
}
Search Memories
POST /v1/memories/search
Content-Type: application/json
{
"query": "search query",
"user_id": "user123",
"limit": 10,
"threshold": 0.7,
"include_graph": true
}
Retrieve for Conversation
POST /v1/memories/retrieve
Content-Type: application/json
{
"messages": [
{"role": "user", "content": "Hello"},
{"role": "assistant", "content": "Hi there!"}
],
"user_id": "user123",
"session_id": "session456"
}
Analytics Endpoints
GET /v1/analytics/user/{user_id}/stats # User memory statistics
GET /v1/analytics/user/{user_id}/relationships # Memory relationships
GET /v1/analytics/user/{user_id}/clusters # Memory clusters
GET /v1/analytics/user/{user_id}/trends # Memory trends
GET /v1/analytics/system/health # System health metrics
Configuration
Environment Variables
Copy .env.example to .env and configure:
# API Settings
API_KEY=langmem_api_key_2025
# Ollama Configuration
OLLAMA_URL=http://localhost:11434
# Supabase Configuration
SUPABASE_URL=http://localhost:8000
SUPABASE_KEY=your_supabase_key
SUPABASE_DB_URL=postgresql://postgres:password@localhost:5435/postgres
# Neo4j Configuration
NEO4J_URL=bolt://localhost:7687
NEO4J_USER=neo4j
NEO4J_PASSWORD=langmem_neo4j_password
Development
Project Structure
langmem/
├── src/ # Source code
│ ├── api/ # FastAPI application
│ │ ├── main.py # Main API server
│ │ ├── fact_extraction.py # Fact-based memory logic
│ │ ├── memory_manager.py # Memory management
│ │ ├── analytics.py # Memory analytics system
│ │ └── performance_optimizer.py # Performance optimization
│ └── mcp/ # Model Context Protocol
│ ├── server.py # MCP server for Claude Code
│ └── requirements.txt
├── scripts/ # Utility scripts
│ ├── start-dev.sh # Development startup
│ ├── start-mcp-server.sh # MCP server startup
│ ├── start-docs-server.sh # Documentation server
│ ├── docs_server.py # Authenticated docs server
│ ├── get-claude-token.py # Matrix setup utility
│ ├── test.sh # Test runner
│ ├── claude-messaging-system.py # Matrix messaging system
│ ├── complete-signal-auth.py # Signal bridge authentication
│ ├── verify-signal-auth.py # Signal bridge verification
│ ├── send-matrix-message.py # Matrix message sender
│ └── optimize-performance.py # Performance optimization
├── tests/ # Test suite
│ ├── test_api.py # API tests
│ ├── test_integration.py # Integration tests
│ ├── test_fact_based_memory.py # Fact extraction tests
│ ├── debug_*.py # Debug utilities
│ └── conftest.py # Test configuration
├── docs/ # Documentation website
│ ├── index.html # Main documentation
│ ├── api/ # API documentation
│ ├── architecture/ # Architecture docs
│ └── implementation/ # Setup guides
├── config/ # Configuration files
│ ├── mcp_config.json # MCP server config
│ ├── claude-matrix-config.json # Matrix setup
│ └── caddyfile-docs-update.txt # Caddy config
├── docker-compose.yml # Docker services
├── Dockerfile # API container
├── requirements.txt # Python dependencies
├── IMPLEMENTATION_STATUS.md # Complete implementation status
└── README.md # This file
Alternative Messaging System
Since Signal bridge requires phone access, an alternative messaging system has been implemented using Home Assistant Matrix integration:
Matrix Messaging Commands
- Send messages:
python scripts/claude-messaging-system.py send "message" - Read messages:
python scripts/claude-messaging-system.py read - Monitor messages:
python scripts/claude-messaging-system.py monitor - Send notifications:
python scripts/claude-messaging-system.py notify "message"
Home Assistant Integration
- Room:
!xZkScMybPseErYMJDz:matrix.klas.chat - Access: Available through Home Assistant Matrix room
- Real-time: Supports real-time communication without Signal app
Running Tests
# All tests
./scripts/test.sh all
# Unit tests only
./scripts/test.sh unit
# Integration tests only
./scripts/test.sh integration
# Quick tests (no slow tests)
./scripts/test.sh quick
# With coverage
./scripts/test.sh coverage
Local Development
# Install dependencies
pip install -r requirements.txt
# Run API directly
python src/api/main.py
# Run tests
pytest tests/ -v
Integration with Existing Infrastructure
Ollama Integration
- Uses your existing Ollama instance on localhost:11434
- Leverages nomic-embed-text for embeddings
- Supports any Ollama model for embedding generation
Supabase Integration
- Connects to your existing Supabase instance
- Uses pgvector extension for vector storage
- Leverages existing authentication and database
Docker Network
- Connects to your existing
localainetwork - Seamlessly integrates with other services
- Maintains network isolation and security
API Documentation
Once running, visit:
- API Documentation: http://localhost:8765/docs
- Interactive API: http://localhost:8765/redoc
- Health Check: http://localhost:8765/health
Monitoring
Health Checks
The API provides comprehensive health monitoring:
curl http://localhost:8765/health
Returns status for:
- Overall API health
- Ollama connectivity
- Supabase connection
- Neo4j database
- PostgreSQL database
Logs
View service logs:
# API logs
docker-compose logs -f langmem-api
# Neo4j logs
docker-compose logs -f langmem-neo4j
# All services
docker-compose logs -f
Troubleshooting
Common Issues
- API not starting: Check if Ollama and Supabase are running
- Database connection failed: Verify database credentials in .env
- Tests failing: Ensure all services are healthy before running tests
- Network issues: Confirm localai network exists and is accessible
Debug Commands
# Check service status
docker-compose ps
# Check network
docker network ls | grep localai
# Test Ollama
curl http://localhost:11434/api/tags
# Test Supabase
curl http://localhost:8000/health
# Check logs
docker-compose logs langmem-api
Production Deployment
For production deployment:
- Update environment variables
- Use proper secrets management
- Configure SSL/TLS
- Set up monitoring and logging
- Configure backup procedures
Documentation
The LangMem project includes comprehensive documentation with authentication protection.
Accessing Documentation
Start the authenticated documentation server:
# Start documentation server on port 8080 (default)
./scripts/start-docs-server.sh
# Or specify a custom port
./scripts/start-docs-server.sh 8090
Access Credentials:
- Username:
langmem - Password:
langmem2025
Available Documentation:
- 📖 Main Docs: System overview and features
- 🏗️ Architecture: Detailed system architecture
- 📡 API Reference: Complete API documentation
- 🛠️ Implementation: Step-by-step setup guide
Direct Server Usage
You can also run the documentation server directly:
python3 scripts/docs_server.py [port]
Then visit: http://localhost:8080 (or your specified port)
Your browser will prompt for authentication credentials.
Contributing
- Fork the repository
- Create a feature branch
- Make your changes
- Add tests
- Run the test suite
- Submit a pull request
License
MIT License - see LICENSE file for details