Files
geutebruck/geutebruck-api/.claude/commands/speckit.tasks.md
Administrator 14893e62a5 feat: Geutebruck GeViScope/GeViSoft Action Mapping System - MVP
This MVP release provides a complete full-stack solution for managing action mappings
in Geutebruck's GeViScope and GeViSoft video surveillance systems.

## Features

### Flutter Web Application (Port 8081)
- Modern, responsive UI for managing action mappings
- Action picker dialog with full parameter configuration
- Support for both GSC (GeViScope) and G-Core server actions
- Consistent UI for input and output actions with edit/delete capabilities
- Real-time action mapping creation, editing, and deletion
- Server categorization (GSC: prefix for GeViScope, G-Core: prefix for G-Core servers)

### FastAPI REST Backend (Port 8000)
- RESTful API for action mapping CRUD operations
- Action template service with comprehensive action catalog (247 actions)
- Server management (G-Core and GeViScope servers)
- Configuration tree reading and writing
- JWT authentication with role-based access control
- PostgreSQL database integration

### C# SDK Bridge (gRPC, Port 50051)
- Native integration with GeViSoft SDK (GeViProcAPINET_4_0.dll)
- Action mapping creation with correct binary format
- Support for GSC and G-Core action types
- Proper Camera parameter inclusion in action strings (fixes CrossSwitch bug)
- Action ID lookup table with server-specific action IDs
- Configuration reading/writing via SetupClient

## Bug Fixes
- **CrossSwitch Bug**: GSC and G-Core actions now correctly display camera/PTZ head parameters in GeViSet
- Action strings now include Camera parameter: `@ PanLeft (Comment: "", Camera: 101028)`
- Proper filter flags and VideoInput=0 for action mappings
- Correct action ID assignment (4198 for GSC, 9294 for G-Core PanLeft)

## Technical Stack
- **Frontend**: Flutter Web, Dart, Dio HTTP client
- **Backend**: Python FastAPI, PostgreSQL, Redis
- **SDK Bridge**: C# .NET 8.0, gRPC, GeViSoft SDK
- **Authentication**: JWT tokens
- **Configuration**: GeViSoft .set files (binary format)

## Credentials
- GeViSoft/GeViScope: username=sysadmin, password=masterkey
- Default admin: username=admin, password=admin123

## Deployment
All services run on localhost:
- Flutter Web: http://localhost:8081
- FastAPI: http://localhost:8000
- SDK Bridge gRPC: localhost:50051
- GeViServer: localhost (default port)

Generated with Claude Code (https://claude.com/claude-code)

Co-Authored-By: Claude Sonnet 4.5 <noreply@anthropic.com>
2025-12-31 18:10:54 +01:00

129 lines
5.9 KiB
Markdown

---
description: Generate an actionable, dependency-ordered tasks.md for the feature based on available design artifacts.
---
## User Input
```text
$ARGUMENTS
```
You **MUST** consider the user input before proceeding (if not empty).
## Outline
1. **Setup**: Run `.specify/scripts/powershell/check-prerequisites.ps1 -Json` from repo root and parse FEATURE_DIR and AVAILABLE_DOCS list. All paths must be absolute. For single quotes in args like "I'm Groot", use escape syntax: e.g 'I'\''m Groot' (or double-quote if possible: "I'm Groot").
2. **Load design documents**: Read from FEATURE_DIR:
- **Required**: plan.md (tech stack, libraries, structure), spec.md (user stories with priorities)
- **Optional**: data-model.md (entities), contracts/ (API endpoints), research.md (decisions), quickstart.md (test scenarios)
- Note: Not all projects have all documents. Generate tasks based on what's available.
3. **Execute task generation workflow**:
- Load plan.md and extract tech stack, libraries, project structure
- Load spec.md and extract user stories with their priorities (P1, P2, P3, etc.)
- If data-model.md exists: Extract entities and map to user stories
- If contracts/ exists: Map endpoints to user stories
- If research.md exists: Extract decisions for setup tasks
- Generate tasks organized by user story (see Task Generation Rules below)
- Generate dependency graph showing user story completion order
- Create parallel execution examples per user story
- Validate task completeness (each user story has all needed tasks, independently testable)
4. **Generate tasks.md**: Use `.specify.specify/templates/tasks-template.md` as structure, fill with:
- Correct feature name from plan.md
- Phase 1: Setup tasks (project initialization)
- Phase 2: Foundational tasks (blocking prerequisites for all user stories)
- Phase 3+: One phase per user story (in priority order from spec.md)
- Each phase includes: story goal, independent test criteria, tests (if requested), implementation tasks
- Final Phase: Polish & cross-cutting concerns
- All tasks must follow the strict checklist format (see Task Generation Rules below)
- Clear file paths for each task
- Dependencies section showing story completion order
- Parallel execution examples per story
- Implementation strategy section (MVP first, incremental delivery)
5. **Report**: Output path to generated tasks.md and summary:
- Total task count
- Task count per user story
- Parallel opportunities identified
- Independent test criteria for each story
- Suggested MVP scope (typically just User Story 1)
- Format validation: Confirm ALL tasks follow the checklist format (checkbox, ID, labels, file paths)
Context for task generation: $ARGUMENTS
The tasks.md should be immediately executable - each task must be specific enough that an LLM can complete it without additional context.
## Task Generation Rules
**CRITICAL**: Tasks MUST be organized by user story to enable independent implementation and testing.
**Tests are OPTIONAL**: Only generate test tasks if explicitly requested in the feature specification or if user requests TDD approach.
### Checklist Format (REQUIRED)
Every task MUST strictly follow this format:
```text
- [ ] [TaskID] [P?] [Story?] Description with file path
```
**Format Components**:
1. **Checkbox**: ALWAYS start with `- [ ]` (markdown checkbox)
2. **Task ID**: Sequential number (T001, T002, T003...) in execution order
3. **[P] marker**: Include ONLY if task is parallelizable (different files, no dependencies on incomplete tasks)
4. **[Story] label**: REQUIRED for user story phase tasks only
- Format: [US1], [US2], [US3], etc. (maps to user stories from spec.md)
- Setup phase: NO story label
- Foundational phase: NO story label
- User Story phases: MUST have story label
- Polish phase: NO story label
5. **Description**: Clear action with exact file path
**Examples**:
- ✅ CORRECT: `- [ ] T001 Create project structure per implementation plan`
- ✅ CORRECT: `- [ ] T005 [P] Implement authentication middleware in src/middleware/auth.py`
- ✅ CORRECT: `- [ ] T012 [P] [US1] Create User model in src/models/user.py`
- ✅ CORRECT: `- [ ] T014 [US1] Implement UserService in src/services/user_service.py`
- ❌ WRONG: `- [ ] Create User model` (missing ID and Story label)
- ❌ WRONG: `T001 [US1] Create model` (missing checkbox)
- ❌ WRONG: `- [ ] [US1] Create User model` (missing Task ID)
- ❌ WRONG: `- [ ] T001 [US1] Create model` (missing file path)
### Task Organization
1. **From User Stories (spec.md)** - PRIMARY ORGANIZATION:
- Each user story (P1, P2, P3...) gets its own phase
- Map all related components to their story:
- Models needed for that story
- Services needed for that story
- Endpoints/UI needed for that story
- If tests requested: Tests specific to that story
- Mark story dependencies (most stories should be independent)
2. **From Contracts**:
- Map each contract/endpoint → to the user story it serves
- If tests requested: Each contract → contract test task [P] before implementation in that story's phase
3. **From Data Model**:
- Map each entity to the user story(ies) that need it
- If entity serves multiple stories: Put in earliest story or Setup phase
- Relationships → service layer tasks in appropriate story phase
4. **From Setup/Infrastructure**:
- Shared infrastructure → Setup phase (Phase 1)
- Foundational/blocking tasks → Foundational phase (Phase 2)
- Story-specific setup → within that story's phase
### Phase Structure
- **Phase 1**: Setup (project initialization)
- **Phase 2**: Foundational (blocking prerequisites - MUST complete before user stories)
- **Phase 3+**: User Stories in priority order (P1, P2, P3...)
- Within each story: Tests (if requested) → Models → Services → Endpoints → Integration
- Each phase should be a complete, independently testable increment
- **Final Phase**: Polish & Cross-Cutting Concerns